What are the rules for calling the superclass constructor?

Base class constructors are automatically called for you if they have no argument. If you want to call a superclass constructor with an argument, you must use the subclass's constructor initialization list. Unlike Java, C++ supports multiple inheritance (for better or worse), so the base class must be referred to by name, rather than "super()".

class SuperClass
{
    public:

        SuperClass(int foo)
        {
            // do something with foo
        }
};

class SubClass : public SuperClass
{
    public:

        SubClass(int foo, int bar)
        : SuperClass(foo)    // Call the superclass constructor in the subclass' initialization list.
        {
            // do something with bar
        }
};

More info on the constructor's initialization list here and here.


In C++, the no-argument constructors for all superclasses and member variables are called for you, before entering your constructor. If you want to pass them arguments, there is a separate syntax for this called "constructor chaining", which looks like this:

class Sub : public Base
{
  Sub(int x, int y)
  : Base(x), member(y)
  {
  }
  Type member;
};

If anything run at this point throws, the bases/members which had previously completed construction have their destructors called and the exception is rethrown to to the caller. If you want to catch exceptions during chaining, you must use a function try block:

class Sub : public Base
{
  Sub(int x, int y)
  try : Base(x), member(y)
  {
    // function body goes here
  } catch(const ExceptionType &e) {
    throw kaboom();
  }
  Type member;
};

In this form, note that the try block is the body of the function, rather than being inside the body of the function; this allows it to catch exceptions thrown by implicit or explicit member and base class initializations, as well as during the body of the function. However, if a function catch block does not throw a different exception, the runtime will rethrow the original error; exceptions during initialization cannot be ignored.


In C++ there is a concept of constructor's initialization list, which is where you can and should call the base class' constructor and where you should also initialize the data members. The initialization list comes after the constructor signature following a colon, and before the body of the constructor. Let's say we have a class A:


class A : public B
{
public:
  A(int a, int b, int c);
private:
  int b_, c_;
};

Then, assuming B has a constructor which takes an int, A's constructor may look like this:


A::A(int a, int b, int c) 
  : B(a), b_(b), c_(c) // initialization list
{
  // do something
}

As you can see, the constructor of the base class is called in the initialization list. Initializing the data members in the initialization list, by the way, is preferable to assigning the values for b_, and c_ inside the body of the constructor, because you are saving the extra cost of assignment.

Keep in mind, that data members are always initialized in the order in which they are declared in the class definition, regardless of their order in the initialization list. To avoid strange bugs, which may arise if your data members depend on each other, you should always make sure that the order of the members is the same in the initialization list and the class definition. For the same reason the base class constructor must be the first item in the initialization list. If you omit it altogether, then the default constructor for the base class will be called automatically. In that case, if the base class does not have a default constructor, you will get a compiler error.