What is a 'Closure'?
Variable scope
When you declare a local variable, that variable has a scope. Generally, local variables exist only within the block or function in which you declare them.
function() {
var a = 1;
console.log(a); // works
}
console.log(a); // fails
If I try to access a local variable, most languages will look for it in the current scope, then up through the parent scopes until they reach the root scope.
var a = 1;
function() {
console.log(a); // works
}
console.log(a); // works
When a block or function is done with, its local variables are no longer needed and are usually blown out of memory.
This is how we normally expect things to work.
A closure is a persistent local variable scope
A closure is a persistent scope which holds on to local variables even after the code execution has moved out of that block. Languages which support closure (such as JavaScript, Swift, and Ruby) will allow you to keep a reference to a scope (including its parent scopes), even after the block in which those variables were declared has finished executing, provided you keep a reference to that block or function somewhere.
The scope object and all its local variables are tied to the function and will persist as long as that function persists.
This gives us function portability. We can expect any variables that were in scope when the function was first defined to still be in scope when we later call the function, even if we call the function in a completely different context.
For example
Here's a really simple example in JavaScript that illustrates the point:
outer = function() {
var a = 1;
var inner = function() {
console.log(a);
}
return inner; // this returns a function
}
var fnc = outer(); // execute outer to get inner
fnc();
Here I have defined a function within a function. The inner function gains access to all the outer function's local variables, including a
. The variable a
is in scope for the inner function.
Normally when a function exits, all its local variables are blown away. However, if we return the inner function and assign it to a variable fnc
so that it persists after outer
has exited, all of the variables that were in scope when inner
was defined also persist. The variable a
has been closed over -- it is within a closure.
Note that the variable a
is totally private to fnc
. This is a way of creating private variables in a functional programming language such as JavaScript.
As you might be able to guess, when I call fnc()
it prints the value of a
, which is "1".
In a language without closure, the variable a
would have been garbage collected and thrown away when the function outer
exited. Calling fnc would have thrown an error because a
no longer exists.
In JavaScript, the variable a
persists because the variable scope is created when the function is first declared and persists for as long as the function continues to exist.
a
belongs to the scope of outer
. The scope of inner
has a parent pointer to the scope of outer
. fnc
is a variable which points to inner
. a
persists as long as fnc
persists. a
is within the closure.
I'll give an example (in JavaScript):
function makeCounter () {
var count = 0;
return function () {
count += 1;
return count;
}
}
var x = makeCounter();
x(); returns 1
x(); returns 2
...etc...
What this function, makeCounter, does is it returns a function, which we've called x, that will count up by one each time its called. Since we're not providing any parameters to x it must somehow remember the count. It knows where to find it based on what's called lexical scoping - it must look to the spot where it's defined to find the value. This "hidden" value is what is called a closure.
Here is my currying example again:
function add (a) {
return function (b) {
return a + b;
}
}
var add3 = add(3);
add3(4); returns 7
What you can see is that when you call add with the parameter a (which is 3), that value is contained in the closure of the returned function that we're defining to be add3. That way, when we call add3 it knows where to find the a value to perform the addition.
Kyle's answer is pretty good. I think the only additional clarification is that the closure is basically a snapshot of the stack at the point that the lambda function is created. Then when the function is re-executed the stack is restored to that state before executing the function. Thus as Kyle mentions, that hidden value (count
) is available when the lambda function executes.