What is a Windows Handle?

A HANDLE is a context-specific unique identifier. By context-specific, I mean that a handle obtained from one context cannot necessarily be used in any other aribtrary context that also works on HANDLEs.

For example, GetModuleHandle returns a unique identifier to a currently loaded module. The returned handle can be used in other functions that accept module handles. It cannot be given to functions that require other types of handles. For example, you couldn't give a handle returned from GetModuleHandle to HeapDestroy and expect it to do something sensible.

The HANDLE itself is just an integral type. Usually, but not necessarily, it is a pointer to some underlying type or memory location. For example, the HANDLE returned by GetModuleHandle is actually a pointer to the base virtual memory address of the module. But there is no rule stating that handles must be pointers. A handle could also just be a simple integer (which could possibly be used by some Win32 API as an index into an array).

HANDLEs are intentionally opaque representations that provide encapsulation and abstraction from internal Win32 resources. This way, the Win32 APIs could potentially change the underlying type behind a HANDLE, without it impacting user code in any way (at least that's the idea).

Consider these three different internal implementations of a Win32 API that I just made up, and assume that Widget is a struct.

Widget * GetWidget (std::string name)
{
    Widget *w;

    w = findWidget(name);

    return w;
}
void * GetWidget (std::string name)
{
    Widget *w;

    w = findWidget(name);

    return reinterpret_cast<void *>(w);
}
typedef void * HANDLE;

HANDLE GetWidget (std::string name)
{
    Widget *w;

    w = findWidget(name);

    return reinterpret_cast<HANDLE>(w);
}

The first example exposes the internal details about the API: it allows the user code to know that GetWidget returns a pointer to a struct Widget. This has a couple of consequences:

  • the user code must have access to the header file that defines the Widget struct
  • the user code could potentially modify internal parts of the returned Widget struct

Both of these consequences may be undesirable.

The second example hides this internal detail from the user code, by returning just void *. The user code doesn't need access to the header that defines the Widget struct.

The third example is exactly the same as the second, but we just call the void * a HANDLE instead. Perhaps this discourages user code from trying to figure out exactly what the void * points to.

Why go through this trouble? Consider this fourth example of a newer version of this same API:

typedef void * HANDLE;

HANDLE GetWidget (std::string name)
{
    NewImprovedWidget *w;

    w = findImprovedWidget(name);

    return reinterpret_cast<HANDLE>(w);
}

Notice that the function's interface is identical to the third example above. This means that user code can continue to use this new version of the API, without any changes, even though the "behind the scenes" implementation has changed to use the NewImprovedWidget struct instead.

The handles in these example are really just a new, presumably friendlier, name for void *, which is exactly what a HANDLE is in the Win32 API (look it up at MSDN). It provides an opaque wall between the user code and the Win32 library's internal representations that increases portability, between versions of Windows, of code that uses the Win32 API.


It's an abstract reference value to a resource, often memory or an open file, or a pipe.

Properly, in Windows, (and generally in computing) a handle is an abstraction which hides a real memory address from the API user, allowing the system to reorganize physical memory transparently to the program. Resolving a handle into a pointer locks the memory, and releasing the handle invalidates the pointer. In this case think of it as an index into a table of pointers... you use the index for the system API calls, and the system can change the pointer in the table at will.

Alternatively a real pointer may be given as the handle when the API writer intends that the user of the API be insulated from the specifics of what the address returned points to; in this case it must be considered that what the handle points to may change at any time (from API version to version or even from call to call of the API that returns the handle) - the handle should therefore be treated as simply an opaque value meaningful only to the API.

I should add that in any modern operating system, even the so-called "real pointers" are still opaque handles into the virtual memory space of the process, which enables the O/S to manage and rearrange memory without invalidating the pointers within the process.

Tags:

Windows

Handle