What is $\frac{d}{dx}x^i$?
The rule does apply, so the derivative is $ix^{i-1}$.
For a simple proof,
$\dfrac{d}{dx}x^i$
$=\dfrac{d}{dx}e^{i\ln x}$
$=e^{i\ln x}\dfrac{d}{dx}i\ln x$
$= e^{i\ln x}\cdot\dfrac{i}{x}$
$ =i\dfrac{e^{i\ln x}}{e^{\ln x}} $
$=ie^{(i-1)\ln x}=ix^{i-1}$