What is std::move(), and when should it be used?
Wikipedia Page on C++11 R-value references and move constructors
- In C++11, in addition to copy constructors, objects can have move constructors.
(And in addition to copy assignment operators, they have move assignment operators.) - The move constructor is used instead of the copy constructor, if the object has type "rvalue-reference" (
Type &&
). std::move()
is a cast that produces an rvalue-reference to an object, to enable moving from it.
It's a new C++ way to avoid copies. For example, using a move constructor, a std::vector
could just copy its internal pointer to data to the new object, leaving the moved object in an moved from state, therefore not copying all the data. This would be C++-valid.
Try googling for move semantics, rvalue, perfect forwarding.
1. "What is it?"
While std::move()
is technically a function - I would say it isn't really a function. It's sort of a converter between ways the compiler considers an expression's value.
2. "What does it do?"
The first thing to note is that std::move()
doesn't actually move anything. It changes an expression from being an lvalue (such as a named variable) to being an xvalue. An xvalue tells the compiler:
You can plunder me, move anything I'm holding and use it elsewhere (since I'm going to be destroyed soon anyway)".
in other words, when you use std::move(x)
, you're allowing the compiler to cannibalize x
. Thus if x
has, say, its own buffer in memory - after std::move()
ing the compiler can have another object own it instead.
You can also move from a prvalue (such as a temporary you're passing around), but this is rarely useful.
3. "When should it be used?"
Another way to ask this question is "What would I cannibalize an existing object's resources for?" well, if you're writing application code, you would probably not be messing around a lot with temporary objects created by the compiler. So mainly you would do this in places like constructors, operator methods, standard-library-algorithm-like functions etc. where objects get created and destroyed automagically a lot. Of course, that's just a rule of thumb.
A typical use is 'moving' resources from one object to another instead of copying. @Guillaume links to this page which has a straightforward short example: swapping two objects with less copying.
template <class T>
swap(T& a, T& b) {
T tmp(a); // we now have two copies of a
a = b; // we now have two copies of b (+ discarded a copy of a)
b = tmp; // we now have two copies of tmp (+ discarded a copy of b)
}
using move allows you to swap the resources instead of copying them around:
template <class T>
swap(T& a, T& b) {
T tmp(std::move(a));
a = std::move(b);
b = std::move(tmp);
}
Think of what happens when T
is, say, vector<int>
of size n. In the first version you read and write 3*n elements, in the second version you basically read and write just the 3 pointers to the vectors' buffers, plus the 3 buffers' sizes. Of course, class T
needs to know how to do the moving; your class should have a move-assignment operator and a move-constructor for class T
for this to work.
You can use move when you need to "transfer" the content of an object somewhere else, without doing a copy (i.e. the content is not duplicated, that's why it could be used on some non-copyable objects, like a unique_ptr). It's also possible for an object to take the content of a temporary object without doing a copy (and save a lot of time), with std::move.
This link really helped me out :
http://thbecker.net/articles/rvalue_references/section_01.html
I'm sorry if my answer is coming too late, but I was also looking for a good link for the std::move, and I found the links above a little bit "austere".
This puts the emphasis on r-value reference, in which context you should use them, and I think it's more detailed, that's why I wanted to share this link here.