What is the difference between "def" and "val" to define a function

Consider this:

scala> def even: (Int => Boolean) = {
             println("def"); 
             (x => x % 2 == 0)
       }
even: Int => Boolean

scala> val even2: (Int => Boolean) = {
             println("val");
             (x => x % 2 == 0)
       }
val //gets printed while declaration. line-4
even2: Int => Boolean = <function1>

scala> even(1)
def
res9: Boolean = false

scala> even2(1)
res10: Boolean = false

Do you see the difference? In short:

def: For every call to even, it calls the body of the even method again. But with even2 i.e. val, the function is initialized only once while declaration (and hence it prints val at line 4 and never again) and the same output is used each time it accessed. For example try doing this:

scala> import scala.util.Random
import scala.util.Random

scala> val x = { Random.nextInt }
x: Int = -1307706866

scala> x
res0: Int = -1307706866

scala> x
res1: Int = -1307706866

When x is initialized, the value returned by Random.nextInt is set as the final value of x. Next time x is used again, it will always return the same value.

You can also lazily initialize x. i.e. first time it is used it is initialized and not while declaration. For example:

scala> lazy val y = { Random.nextInt }
y: Int = <lazy>

scala> y
res4: Int = 323930673

scala> y
res5: Int = 323930673

Method def even evaluates on call and creates new function every time (new instance of Function1).

def even: Int => Boolean = _ % 2 == 0
even eq even
//Boolean = false

val even: Int => Boolean = _ % 2 == 0
even eq even
//Boolean = true

With def you can get new function on every call:

val test: () => Int = {
  val r = util.Random.nextInt
  () => r
}

test()
// Int = -1049057402
test()
// Int = -1049057402 - same result

def test: () => Int = {
  val r = util.Random.nextInt
  () => r
}

test()
// Int = -240885810
test()
// Int = -1002157461 - new result

val evaluates when defined, def - when called:

scala> val even: Int => Boolean = ???
scala.NotImplementedError: an implementation is missing

scala> def even: Int => Boolean = ???
even: Int => Boolean

scala> even
scala.NotImplementedError: an implementation is missing

Note that there is a third option: lazy val.

It evaluates when called the first time:

scala> lazy val even: Int => Boolean = ???
even: Int => Boolean = <lazy>

scala> even
scala.NotImplementedError: an implementation is missing

But returns the same result (in this case same instance of FunctionN) every time:

lazy val even: Int => Boolean = _ % 2 == 0
even eq even
//Boolean = true

lazy val test: () => Int = {
  val r = util.Random.nextInt
  () => r
}

test()
// Int = -1068569869
test()
// Int = -1068569869 - same result

Performance

val evaluates when defined.

def evaluates on every call, so performance could be worse than val for multiple calls. You'll get the same performance with a single call. And with no calls you'll get no overhead from def, so you can define it even if you will not use it in some branches.

With a lazy val you'll get a lazy evaluation: you can define it even if you will not use it in some branches, and it evaluates once or never, but you'll get a little overhead from double check locking on every access to your lazy val.

As @SargeBorsch noted you could define method, and this is the fastest option:

def even(i: Int): Boolean = i % 2 == 0

But if you need a function (not method) for function composition or for higher order functions (like filter(even)) compiler will generate a function from your method every time you are using it as function, so performance could be slightly worse than with val.

Tags:

Scala