What is the difference between loose coupling and tight coupling in the object oriented paradigm?

Tight coupling is when a group of classes are highly dependent on one another.

This scenario arises when a class assumes too many responsibilities, or when one concern is spread over many classes rather than having its own class.

Loose coupling is achieved by means of a design that promotes single-responsibility and separation of concerns.

A loosely-coupled class can be consumed and tested independently of other (concrete) classes.

Interfaces are a powerful tool to use for decoupling. Classes can communicate through interfaces rather than other concrete classes, and any class can be on the other end of that communication simply by implementing the interface.

Example of tight coupling:

class CustomerRepository
{
    private readonly Database database;

    public CustomerRepository(Database database)
    {
        this.database = database;
    }

    public void Add(string CustomerName)
    {
        database.AddRow("Customer", CustomerName);
    }
}

class Database
{
    public void AddRow(string Table, string Value)
    {
    }
}

Example of loose coupling:

class CustomerRepository
{
    private readonly IDatabase database;

    public CustomerRepository(IDatabase database)
    {
        this.database = database;
    }

    public void Add(string CustomerName)
    {
        database.AddRow("Customer", CustomerName);
    }
}

interface IDatabase
{
    void AddRow(string Table, string Value);
}

class Database implements IDatabase
{
    public void AddRow(string Table, string Value)
    {
    }
}

Another example here.


Explanation without any code

Summary Example:

The Hat is "loosely coupled" to the body. This means you can easily take the hat off without making any changes to the person/body. When you can do that then you have "loose coupling". See below for elaboration.

The Hat is "loosely coupled" to the body. This means you can easily take then hat off without making any changes to the the person/body. Picture Attribution: https://pixabay.com/en/greeting-cylinder-chapeau-dignity-317250/

Tight coupling (Detailed Example)

Skin - tight coupling

Think of your skin. It's stuck to your body. It fits like a glove. But what if you wanted to change your skin colour from say white to black? Can you imagine just how painful it would be to peel off your skin, dye it, and then to paste it back on etc? Changing your skin is difficult because it is tightly coupled to your body. You just can't make changes easily. You would have to fundamentally redesign a human being in order to make this possible.

  • Key Point #1: In other words, if you want to change the skin, you would also HAVE TO change the design of your body as well because the two are joined together - they are tightly coupled.

God was not a good object oriented programmer.

Loose coupling (Detailed Example)

Now think of getting dressed in the morning. You don't like blue? No problems: you can put a red shirt on instead. You can do this easily and effortlessly because the shirt is not really connected to your body the same way as your skin. The shirt doesn't know or care about what body it is going on. In other words, you can change your clothes, without really changing your body.

  • That's key point #2. If you change your shirt, then you are not forced to change your body - when you can do that, then you have loose coupling. When you can't do that, then you have tight coupling.

That's the basic concept in a nutshell.

Why is all of this important?

It's important because software changes all the time. Generally speaking you want to be able to easily modify your code, without changing your code. I know that sounds like an oxymoron, but please bear with me.

Practical Examples of Coupling when Designing Software

  • CSV/JSON/DB Examples: If somebody wants their output in a CSV file rather than JSON etc., or if you want to switch from MySQL to PostGreSQL you should be able to make those changes extremely easily in your code, without having to rewrite the entire class etc. In other words, you do not want to tightly couple your application with a specific database implementation (e.g. Mysql) or to a particular output (e.g. CSV files). Because, as is inevitable in software, changes will come. When they do come, it's much easier if your parts of your code are loosely coupled. Or if you're using AWS and they start charging too much because of market dominance, you should be able to somewhat easily switch to Google or Azure etc.

Practical Example in Manufacturing - Car Parts:

Another example to reinforce coupling:

If somebody wants their car in black, you shouldn't have to redesign the entire car in order to do that. A car and its spare parts would be a perfect example of a loosely coupled architecture. If you want to replace your engine with a better one, you should be able to simply remove your engine without too much effort and swap it for a better one. If your car only works with Rolls Royce 1234 Engines and no other engines - then your car will is tightly coupled to that engine (Rolls Royce 1234).

Some amount of coupling is going to happen, but you should work to minimise it as much as you can. Why? Because when requirements change we should still be able to deliver good quality software, very quickly and we are aided in that goal by loose coupling.

Summary

In short, loose coupling makes code easier to change. The answers above provide some code which is worth reading at this point.

Picture Attribution.


In object oriented design, the amount of coupling refers to how much the design of one class depends on the design of another class. In other words, how often do changes in class A force related changes in class B? Tight coupling means the two classes often change together, loose coupling means they are mostly independent. In general, loose coupling is recommended because it's easier to test and maintain.

You may find this paper by Martin Fowler (PDF) helpful.