What is the $\lim_{n\rightarrow \infty }(1+\frac{1}{n})^{n^n}$
Hint:Observe that: $$\left(1+\dfrac{1}{n}\right)^{n^n}> \left(\left(1+\dfrac{1}{n}\right)^n\right)^n> 2^n$$ for sufficiently large $n$.
Hint:Observe that: $$\left(1+\dfrac{1}{n}\right)^{n^n}> \left(\left(1+\dfrac{1}{n}\right)^n\right)^n> 2^n$$ for sufficiently large $n$.