What is the primitive function of $\int 1/(x^{2n} +1)dx$?

We have $f(x)=\frac{1}{x^n+1}$. Note that we can write

$$f(x)=\prod_{k=1}^n(x-x_k)^{-1} \tag {1}$$

where $x_k=e^{i(2k-1)\pi/n}$, $k=1, \cdots,n$.

We can also express $(1)$ as

$$f(x)=\sum_{k=1}^na_k(x-x_k)^{-1} \tag {2}$$

where $a_k=\frac{-x_k}{n}$.

Now, we can write

$$\begin{align} \int\frac{1}{x^n+1}dx=-\frac1n\sum_{k=1}^nx_k\log(x-x_k)+C \end{align}$$

which can be more explicitly written as

$$\bbox[5px,border:2px solid #C0A000]{\int\frac{1}{x^n+1}dx=-\frac1n\sum_{k=1}^n\left(\frac12 x_{kr}\log(x^2-2x_{kr}x+1)-x_{ki}\arctan\left(\frac{x-x_{kr}}{x_{ki}}\right)\right)+C'} $$

where $x_{kr}$ and $x_{ki}$ are the real and imaginary parts of $x_k$, respectively, and are given by

$$x_{kr}=\text{Re}\left(x_k\right)=\cos \left(\frac{(2k-1)\pi}{n}\right)$$

$$x_{ki}=\text{Im}\left(x_k\right)=\sin \left(\frac{(2k-1)\pi}{n}\right)$$


NOTE 1:

The integral of $\frac{1}{1+x^{2n}}$ is a special case for the development herein. Simply let $n\to 2n$.


NOTE 2:

As requested, we will derive the form $a_k=-\frac{x_k}{n}$. To that end, we use $(2)$ and observe that

$$\begin{align} \lim_{x\to x_\ell}\left((x-x_{\ell})\sum_{k=1}^{n}a_k(x-x_k)^{-1}\right)&=\lim_{x\to x_\ell}\left((x-x_{\ell})\frac{1}{1+x^n}\right) \tag 3 \end{align}$$

The left-hand side of $(3)$ is simply $a_{\ell}$. For the right-hand side, straightforward application of L'Hospital's Rule yields

$$\begin{align} \lim_{x\to x_\ell}\left(\frac{(x-x_{\ell})}{1+x^n}\right)&=\frac{1}{nx_{\ell}^{n-1}} \end{align}$$

Finally, we note that since $x_{\ell}^n=-1$, then

$$\begin{align} \frac{1}{nx_{\ell}^{n-1}}&=\frac{x_{\ell}}{nx_{\ell}^n}\\\\ &=-\frac{x_{\ell}}{n} \end{align}$$

Thus, we have that

$$\bbox[5px,border:2px solid #C0A000]{a_{k}=-\frac{x_k}{n}}$$


It has no simple closed form, unless you also give some nice integration endpoints, such as $\int \limits _0 ^\infty$. For your curiosity, you get $x \space {}_2 F _1 (\frac 1 {2n}, 1, 1+ \frac 1 {2n}, -x ^{2n})$, where ${}_2 F _1$ is the hypergeometric function.