Why does function composition compose from right to left in Javascript?
To answer the original question: Why does function composition compose from right to left?
- So it is traditionally made in mathematics
comp(f)(g)(x)
has the same order asf(g(x))
- It is trivial to create a reversed or forward composition (see example)
Forward function composition:
const comp = f => g => x => f(g(x));
const flip = f => x => y => f(y)(x);
const flipped = flip(comp);
const inc = a => a + 1;
const sqr = b => b * b;
comp(sqr)(inc)(2); // 9, since 2 is first put into inc then sqr
flipped(sqr)(inc)(2); // 5, since 2 is first put into sqr then inc
This way of calling functions is called currying, and works like this:
// the original:
comp(sqr)(inc)(2); // 9
// is interpreted by JS as:
( ( ( comp(sqr) ) (inc) ) (2) ); // 9 still (yes, this actually executes!)
// it is even clearer when we separate it into discrete steps:
const compSqr = comp(sqr); // g => x => sqr(g(x))
compSqr(inc)(2); // 9 still
const compSqrInc = compSqr(inc); // x => sqr(x + 1)
compSqrInc(2); // 9 still
const compSqrInc2 = compSqrInc(2); // sqr(3)
compSqrInc2; // 9 still
So functions are composed and interpreted (by the JS interpreter) left to right, while on execution, their values flow through each function from right to left. In short: first outside-in, then inside-out.
But flip
has the restriction that a flipped composition can't be combined with itself to form a "higher order composition":
const comp2 = comp(comp)(comp);
const flipped2 = flipped(flipped)(flipped);
const add = x => y => x + y;
comp2(sqr)(add)(2)(3); // 25
flipped2(sqr)(add)(2)(3); // "x => f(g(x))3" which is nonsense
Conclusion: The right-to-left order is traditional/conventional but not intuitive.
Your question is actually about the order of arguments in a definition of the function composition operator rather than right- or left-associativity. In mathematics, we usually write "f o g" (equivalent to comp(f)(g) in your definition) to mean the function that takes x and returns f(g(x)). Thus "f o (g o h)" and "(f o g) o h" are equivalent and both mean the function that maps each argument x to f(g(h(x))).
That said, we sometimes write f;g (equivalent to compl(f)(g) in your code) to mean the function which maps x to g(f(x)). Thus, both (f;g);h and f;(g;h) mean the function mapping x to h(g(f(x))).
A reference: https://en.wikipedia.org/wiki/Function_composition#Alternative_notations