Word frequency count Java 8
(NOTE: See the edits below)
As an alternative to Mounas answer, here is an approach that does the word count in parallel:
import java.util.Arrays;
import java.util.List;
import java.util.Map;
import java.util.stream.Collectors;
public class ParallelWordCount
{
public static void main(String[] args)
{
List<String> list = Arrays.asList(
"hello", "bye", "ciao", "bye", "ciao");
Map<String, Integer> counts = list.parallelStream().
collect(Collectors.toConcurrentMap(
w -> w, w -> 1, Integer::sum));
System.out.println(counts);
}
}
EDIT In response to the comment, I ran a small test with JMH, comparing the
toConcurrentMap
and thegroupingByConcurrent
approach, with different input list sizes and random words of different lengths. This test suggested that thetoConcurrentMap
approach was faster. When considering how different these approaches are "under the hood", it's hard to predict something like this.As a further extension, based on further comments, I extended the test to cover all four combinations of
toMap
,groupingBy
, serial and parallel.The results are still that the
toMap
approach is faster, but unexpectedly (at least, for me) the "concurrent" versions in both cases are slower than the serial versions...:
(method) (count) (wordLength) Mode Cnt Score Error Units
toConcurrentMap 1000 2 avgt 50 146,636 ± 0,880 us/op
toConcurrentMap 1000 5 avgt 50 272,762 ± 1,232 us/op
toConcurrentMap 1000 10 avgt 50 271,121 ± 1,125 us/op
toMap 1000 2 avgt 50 44,396 ± 0,541 us/op
toMap 1000 5 avgt 50 46,938 ± 0,872 us/op
toMap 1000 10 avgt 50 46,180 ± 0,557 us/op
groupingBy 1000 2 avgt 50 46,797 ± 1,181 us/op
groupingBy 1000 5 avgt 50 68,992 ± 1,537 us/op
groupingBy 1000 10 avgt 50 68,636 ± 1,349 us/op
groupingByConcurrent 1000 2 avgt 50 231,458 ± 0,658 us/op
groupingByConcurrent 1000 5 avgt 50 438,975 ± 1,591 us/op
groupingByConcurrent 1000 10 avgt 50 437,765 ± 1,139 us/op
toConcurrentMap 10000 2 avgt 50 712,113 ± 6,340 us/op
toConcurrentMap 10000 5 avgt 50 1809,356 ± 9,344 us/op
toConcurrentMap 10000 10 avgt 50 1813,814 ± 16,190 us/op
toMap 10000 2 avgt 50 341,004 ± 16,074 us/op
toMap 10000 5 avgt 50 535,122 ± 24,674 us/op
toMap 10000 10 avgt 50 511,186 ± 3,444 us/op
groupingBy 10000 2 avgt 50 340,984 ± 6,235 us/op
groupingBy 10000 5 avgt 50 708,553 ± 6,369 us/op
groupingBy 10000 10 avgt 50 712,858 ± 10,248 us/op
groupingByConcurrent 10000 2 avgt 50 901,842 ± 8,685 us/op
groupingByConcurrent 10000 5 avgt 50 3762,478 ± 21,408 us/op
groupingByConcurrent 10000 10 avgt 50 3795,530 ± 32,096 us/op
I'm not so experienced with JMH, maybe I did something wrong here - suggestions and corrections are welcome:
import java.util.ArrayList;
import java.util.List;
import java.util.Map;
import java.util.Random;
import java.util.concurrent.TimeUnit;
import java.util.function.Function;
import java.util.stream.Collectors;
import org.openjdk.jmh.annotations.Benchmark;
import org.openjdk.jmh.annotations.BenchmarkMode;
import org.openjdk.jmh.annotations.Mode;
import org.openjdk.jmh.annotations.OutputTimeUnit;
import org.openjdk.jmh.annotations.Param;
import org.openjdk.jmh.annotations.Scope;
import org.openjdk.jmh.annotations.Setup;
import org.openjdk.jmh.annotations.State;
import org.openjdk.jmh.infra.Blackhole;
@State(Scope.Thread)
public class ParallelWordCount
{
@Param({"toConcurrentMap", "toMap", "groupingBy", "groupingByConcurrent"})
public String method;
@Param({"2", "5", "10"})
public int wordLength;
@Param({"1000", "10000" })
public int count;
private List<String> list;
@Setup
public void initList()
{
list = createRandomStrings(count, wordLength, new Random(0));
}
@Benchmark
@BenchmarkMode(Mode.AverageTime)
@OutputTimeUnit(TimeUnit.MICROSECONDS)
public void testMethod(Blackhole bh)
{
if (method.equals("toMap"))
{
Map<String, Integer> counts =
list.stream().collect(
Collectors.toMap(
w -> w, w -> 1, Integer::sum));
bh.consume(counts);
}
else if (method.equals("toConcurrentMap"))
{
Map<String, Integer> counts =
list.parallelStream().collect(
Collectors.toConcurrentMap(
w -> w, w -> 1, Integer::sum));
bh.consume(counts);
}
else if (method.equals("groupingBy"))
{
Map<String, Long> counts =
list.stream().collect(
Collectors.groupingBy(
Function.identity(), Collectors.<String>counting()));
bh.consume(counts);
}
else if (method.equals("groupingByConcurrent"))
{
Map<String, Long> counts =
list.parallelStream().collect(
Collectors.groupingByConcurrent(
Function.identity(), Collectors.<String> counting()));
bh.consume(counts);
}
}
private static String createRandomString(int length, Random random)
{
StringBuilder sb = new StringBuilder();
for (int i = 0; i < length; i++)
{
int c = random.nextInt(26);
sb.append((char) (c + 'a'));
}
return sb.toString();
}
private static List<String> createRandomStrings(
int count, int length, Random random)
{
List<String> list = new ArrayList<String>(count);
for (int i = 0; i < count; i++)
{
list.add(createRandomString(length, random));
}
return list;
}
}
The times are only similar for the serial case of a list with 10000 elements, and 2-letter words.
It could be worthwhile to check whether for even larger list sizes, the concurrent versions eventually outperform the serial ones, but currently don't have the time for another detailed benchmark run with all these configurations.
I want to share the solution I found because at first I expected to use map-and-reduce methods, but it was a bit different.
Map<String,Long> collect = wordsList.stream()
.collect( Collectors.groupingBy( Function.identity(), Collectors.counting() ));
Or for Integer values:
Map<String,Integer> collect = wordsList.stream()
.collect( Collectors.groupingBy( Function.identity(), Collectors.summingInt(e -> 1) ));
EDIT
I add how to sort the map by value:
LinkedHashMap<String, Long> countByWordSorted = collect.entrySet()
.stream()
.sorted(Map.Entry.comparingByValue(Comparator.reverseOrder()))
.collect(Collectors.toMap(
Map.Entry::getKey,
Map.Entry::getValue,
(v1, v2) -> {
throw new IllegalStateException();
},
LinkedHashMap::new
));