Inequality. $\frac{1}{\sqrt{x^2+yz+3}}+\frac{1}{\sqrt{y^2+zx+3}}+\frac{1}{\sqrt{z^2+xy+3}} \geq 1$
I try to apply Cauchy-Buniakowski and I obtaine the followin:
$$\sum_{x,y,z}{\frac{1}{\sqrt{x^2+yz+3}}}\cdot \sum_{x,y,z}{\left(\sqrt{x^2+yz+3}\right)}\geq 9$$
So I have to prove that : $$\displaystyle\frac{9}{\sum_{x,y,z}{\left(\sqrt{x^2+yz+3}\right)}} \geq 1$$ if $x^2+y^2+z^2 \leq9$.
$$\left(\sum_{x,y,z}{\sqrt{x^2+yz+3}}\right) \leq \sqrt{\left(\sum{x^2+yz+3}\right)(1+1+1)} $$ so we have to prove that:
$$\frac{9}{\sqrt{\left(\sum{x^2+yz+3}\right)(1+1+1)}} \geq 1$$ hence:
$$3(x^2+y^2+z^2+xy+yz+zx+9) \leq 81$$ or
$$(x^2+y^2+z^2+xy+yz+zx+9) \leq 27$$ or
$$x^2+y^2+z^2+xy+yz+zx \leq 18$$
$$x^2+y^2+z^2+xy+yz+zx \leq 2\left(x^2+y^2+z^2\right) \leq 2 \cdot 9 =18.$$