Infinite Series $\sum_{n=1}^{\infty}\frac{4^nH_n}{n^2{2n\choose n}}$

$$S=2\int_{0}^{1}\frac{x}{1-x^2}\left(\frac{\pi^2}{2}-2\arcsin^2(x)\right)dx\overset{IBP}=-4\int_0^1 \frac{\arcsin x\ln(1-x^2)}{\sqrt{1-x^2}}dx$$ $$\overset{x=\sin t}=-8\int_0^\frac{\pi}{2} t \ln(\cos t)dt=8 \ln 2 \int_0^\frac{\pi}{2}t dt+8\sum_{n=1}^\infty \frac{(-1)^n}{n}\int_0^\frac{\pi}{2} t\cos(2n t)dt$$ $$={\pi^2}\ln 2+2\sum_{n=1}^\infty \frac{1-(-1)^n}{n^3}=\boxed{\pi^2 \ln 2 +\frac72 \zeta(3)}$$


From here, we have

$$\frac{\arcsin z}{\sqrt{1-z^2}}=\sum_{n=1}^\infty\frac{(2z)^{2n-1}}{n{2n \choose n}}$$

substitute $z=\sqrt{y}$, we get

$$\sum_{n=1}^\infty\frac{4^ny^n}{n{2n \choose n}}=2\sqrt{y}\frac{\arcsin\sqrt{y}}{\sqrt{1-y}}$$

Now multiply both sides by $-\frac{\ln(1-y)}{y}$ then integrate from $y=0$ to $1$ and using the fact that $-\int_0^1 y^{n-1}\ln(1-x)\ dy=\frac{H_n}{n}$, we get

\begin{align} \sum_{n=1}^\infty\frac{4^nH_n}{n^2{2n \choose 2}}&=-2\int_0^1\frac{\arcsin\sqrt{y}}{\sqrt{y}\sqrt{1-y}}\ln(1-y)\ dy\overset{\arcsin\sqrt{y}=x}{=}-8\int_0^{\pi/2}x\ln(\cos x)\ dx\\ &=-8\int_0^{\pi/2}x\left\{-\ln2-\sum_{n=1}^\infty\frac{(-1)^n\cos(2nx)}{n}\right\}\ dx\\ &=\pi^2\ln2+8\sum_{n=1}^\infty\frac{(-1)^n}{n}\int_0^{\pi/2}x\cos(2nx) dx\\ &=\pi^2\ln2+8\sum_{n=1}^\infty\frac{(-1)^n}{n}\left(\frac{\pi\sin(n\pi)}{4n}+\frac{\cos(n\pi)}{4n^2}-\frac1{4n^2}\right)\\ &=\pi^2\ln2+2\pi\sum_{n=1}^\infty\frac{(-1)^n\sin(n\pi)}{n^2}+2\sum_{n=1}^\infty\frac{(-1)^n\cos(n\pi)}{n^3}-2\sum_{n=1}^\infty\frac{(-1)^n}{n^3}\\ &=\pi^2\ln2+0+2\sum_{n=1}^\infty\frac{(-1)^n(-1)^n}{n^3}-2\operatorname{Li}_3(-1)\\ &=\pi^2\ln2+2\zeta(3)-2\left(-\frac34\zeta(3)\right)\\ &=\pi^2\ln2+\frac72\zeta(3) \end{align}