initialize a numpy array
The way I usually do that is by creating a regular list, then append my stuff into it, and finally transform the list to a numpy array as follows :
import numpy as np
big_array = [] # empty regular list
for i in range(5):
arr = i*np.ones((2,4)) # for instance
big_array.append(arr)
big_np_array = np.array(big_array) # transformed to a numpy array
of course your final object takes twice the space in the memory at the creation step, but appending on python list is very fast, and creation using np.array() also.
numpy.zeros
Return a new array of given shape and type, filled with zeros.
or
numpy.ones
Return a new array of given shape and type, filled with ones.
or
numpy.empty
Return a new array of given shape and type, without initializing entries.
However, the mentality in which we construct an array by appending elements to a list is not much used in numpy, because it's less efficient (numpy datatypes are much closer to the underlying C arrays). Instead, you should preallocate the array to the size that you need it to be, and then fill in the rows. You can use numpy.append
if you must, though.
Introduced in numpy 1.8:
numpy.full
Return a new array of given shape and type, filled with fill_value.
Examples:
>>> import numpy as np
>>> np.full((2, 2), np.inf)
array([[ inf, inf],
[ inf, inf]])
>>> np.full((2, 2), 10)
array([[10, 10],
[10, 10]])