Initialize Multiple Numpy Arrays (Multiple Assignment) - Like MATLAB deal()
If you're really motivated to do this in a one-liner you could create an (n_vars, ...)
array of zeros, then unpack it along the first dimension:
a, b, c = np.zeros((3, 5))
print(a is b)
# False
Another option is to use a list comprehension or a generator expression:
a, b, c = [np.zeros(5) for _ in range(3)] # list comprehension
d, e, f = (np.zeros(5) for _ in range(3)) # generator expression
print(a is b, d is e)
# False False
Be careful, though! You might think that using the *
operator on a list or tuple containing your call to np.zeros()
would achieve the same thing, but it doesn't:
h, i, j = (np.zeros(5),) * 3
print(h is i)
# True
This is because the expression inside the tuple gets evaluated first. np.zeros(5)
therefore only gets called once, and each element in the repeated tuple ends up being a reference to the same array. This is the same reason why you can't just use a = b = c = np.zeros(5)
.
Unless you really need to assign a large number of empty array variables and you really care deeply about making your code compact (!), I would recommend initialising them on separate lines for readability.
Nothing wrong or un-Pythonic with
dData = np.zeros(n)
gData = np.zeros(n)
etc.
You could put them on one line, but there's no particular reason to do so.
dData, gData = np.zeros(n), np.zeros(n)
Don't try dData = gData = np.zeros(n)
, because a change to dData
changes gData
(they point to the same object). For the same reason you usually don't want to use x = y = []
.
The deal
in MATLAB is a convenience, but isn't magical. Here's how Octave implements it
function [varargout] = deal (varargin)
if (nargin == 0)
print_usage ();
elseif (nargin == 1 || nargin == nargout)
varargout(1:nargout) = varargin;
else
error ("deal: nargin > 1 and nargin != nargout");
endif
endfunction
In contrast to Python, in Octave (and presumably MATLAB)
one=two=three=zeros(1,3)
assigns different objects to the 3 variables.
Notice also how MATLAB talks about deal
as a way of assigning contents of cells and structure arrays. http://www.mathworks.com/company/newsletters/articles/whats-the-big-deal.html