Insert a Pandas Dataframe into mongodb using PyMongo

I doubt there is a both quickest and simple method. If you don't worry about data conversion, you can do

>>> import json
>>> df = pd.DataFrame.from_dict({'A': {1: datetime.datetime.now()}})
>>> df
                           A
1 2013-11-23 21:14:34.118531

>>> records = json.loads(df.T.to_json()).values()
>>> db.myCollection.insert(records)

But in case you try to load data back, you'll get:

>>> df = read_mongo(db, 'myCollection')
>>> df
                     A
0  1385241274118531000
>>> df.dtypes
A    int64
dtype: object

so you'll have to convert 'A' columnt back to datetimes, as well as all not int, float or str fields in your DataFrame. For this example:

>>> df['A'] = pd.to_datetime(df['A'])
>>> df
                           A
0 2013-11-23 21:14:34.118531

odo can do it using

odo(df, db.myCollection)

If your dataframe has missing data (i.e None,nan) and you don't want null key values in your documents:

db.insert_many(df.to_dict("records")) will insert keys with null values. If you don't want the empty key values in your documents you can use a modified version of pandas .to_dict("records") code below:

from pandas.core.common import _maybe_box_datetimelike
my_list = [dict((k, _maybe_box_datetimelike(v)) for k, v in zip(df.columns, row) if v != None and v == v) for row in df.values]
db.insert_many(my_list)

where the if v != None and v == v I've added checks to make sure the value is not None or nan before putting it in the row's dictionary. Now your .insert_many will only include keys with values in the documents (and no null data types).


Here you have the very quickest way. Using the insert_many method from pymongo 3 and 'records' parameter of to_dict method.

db.collection.insert_many(df.to_dict('records'))