$\int_0^4\frac{\log x}{\sqrt{4x-x^2}} dx=0$
$$4x-x^2=2^2-(x-2)^2$$
Let $x-2=2\cos2t$
$$\int_0^4\dfrac{\ln(x)}{\sqrt{4x-x^2}}dx=-4\int_{\pi/2}^0\ln(2+2\cos2t)dt$$
$$=2\ln2\int_0^{\pi/2}dt+4\int_0^{\pi/2}\ln(\cos t)dt$$
See Evaluate $\int_0^{\pi/2}\log\cos(x)\,\mathrm{d}x$