Integral $\int \frac{dx}{\tan x + \cot x + \csc x + \sec x}$
$\displaystyle\int \frac{dx}{\tan x + \cot x + \csc x + \sec x}=$
$\displaystyle\int\frac{\sin x\cos x}{1+\sin x+\cos x}\,dx=\int\frac{\sin x\cos x}{1+\sin x+\cos x}\cdot\frac{1-(\sin x+\cos x)}{1-(\sin x+\cos x)}\,dx$
$=\displaystyle\int\frac{\sin x\cos x(1-(\sin x+\cos x))}{1-(\sin x+\cos x)^2}\,dx=\int\frac{\sin x\cos x-\sin^2 x\cos x-\cos^2x\sin x}{-2\sin x\cos x}\,dx$
$\displaystyle=-\frac{1}{2}\int(1-\sin x-\cos x)\,dx=\frac{1}{2}(-x-\cos x+\sin x)+C$
$$\begin{aligned}\int \frac{1}{\frac{\sin(x)}{\cos(x)}\:+\:\frac{\cos(x)}{\sin(x)}\:+\:\frac{1}{\sin(x)}\:+\:\frac{1}{\cos(x)}}dx & = \int \:\frac{\sin \:\left(2x\right)}{2\left(\cos \:\left(x\right)+\sin \:\left(x\right)+1\right)}dx \\& =\frac{1}{2}\cdot \int \:\frac{\sin \left(2x\right)}{\cos \left(x\right)+\sin \left(x\right)+1}dx \\& =\frac{1}{2}\cdot \frac{1}{2}\cdot \int \:\frac{\sin \left(t\right)}{\sin \left(\frac{t}{2}\right)+\cos \left(\frac{t}{2}\right)+1}dt \\& =\frac{1}{2}\cdot \frac{1}{2}\cdot \int \:\sin \left(\frac{t}{2}\right)+\cos \left(\frac{t}{2}\right)-1dt \\& =\color{red}{\frac{1}{4}\left(-2x+2\sin \left(x\right)-2\cos \left(x\right)\right)+C} \end{aligned}$$
Applyied substitution: $$\color{blue}{t=2x,\quad \:dt=2dx}$$