Integral $\int \frac{\sqrt{\sin x}}{\sqrt{\sin x} + \sqrt{\cos x}} dx$
$\displaystyle \mathcal{I} = \int\frac{\sqrt{\sin x}}{\sqrt{\sin x}+\sqrt{\cos x}}dx = \int \frac{\sqrt{\tan x}}{1+\sqrt{\tan x}}dx$
substitute $\tan x= t^2$ and $\displaystyle dx = \frac{1}{1+t^4}dt$
$\displaystyle \mathcal{I}= \int\frac{t}{(1+t)(1+t^4)}dt = \frac{1}{2}\int\frac{\bigg((1+t^4)+(1-t^4)\bigg)t}{(1+t)(1+t^4)}dt$
$\displaystyle = \frac{1}{2}\int\frac{t}{1+t}dt+\frac{1}{2}\int\frac{(t-t^2)(1+t^2)}{1+t^4}dt$
$\displaystyle = \frac{1}{2}\int \frac{(1+t)-1}{1+t}dt+\frac{1}{2}\int \frac{t+t^3-(t^2-1)-t^4-1}{1+t^4}dt$
$\displaystyle =-\frac{t}{2}+\frac{1}{2}\ln|t+1|+\frac{1}{4}\int\frac{2t}{1+t^4}+\frac{1}{2}\int\frac{t^3}{1+t^4}dt-\frac{1}{2}\int \frac{t^2-1}{1+t^4}dt-\frac{1}{2}t+\mathcal{C}$
all integrals are easy except $\displaystyle \mathcal{J} = \int\frac{t^2-1}{1+t^4}dt = \int\frac{1-t^{-2}}{\left(t+t^{-1}\right)^2-2}dt = \int\frac{(t-t^{-1})'}{(t-t^{-1})^2-2}dt$
We rationalise the denominator to get $$I =\int \frac {\sin x-\sqrt {\cos x\sin x}}{\sin x-\cos x} dx $$ Writing everything in terms of $\cot x $, we get $$I =\int \mathrm{csc}^2 x\left(\frac {\sqrt {\cot x}-1}{\cot^3 x-\cot^2 x+\cot x-1}\right) dx $$ Now substituting $u=\cot x $ and further $v=\sqrt {u} $ gives us $$I = -\int\frac {2v }{v^5+ v^4 + v+1} dv $$ Performing a partial fraction decomposition we have $$I = \frac {2}{4-4\sqrt {2}}\int \frac {v +\sqrt {2}-1}{v^2 +\sqrt {2}v +1} dv +\frac {2}{4+4\sqrt {2}}\int \frac {v-\sqrt {2}-1}{v^2-\sqrt {2 }v+1} dv+\int \frac {1}{1+v} dv =I_1 +I_2 +I_3$$ Hope you can take it from here.
HINT multiply nominator and denominator by $\frac{1}{\sqrt{sin(x)}}$, then $t = \sqrt{cot(x)} $ after all you'll have $\displaystyle\frac{2t}{(t^4 + 1)(t+1)}$