Intraclass Correlation in Python Module?

The R package psych has an implementation of the Intraclass Correlations (ICC) that calculates many types of variants including ICC(1,1), ICC(1,k), ICC(2,1), ICC(2,k), ICC(3,1) and ICC(3,k) plus other metrics.

This page has a good comparison between the different variants,

You can use the R ICC function via rpy2 package.

Example:

  1. First install psych and lme4 in R:
install.packages("psych")
install.packages("lme4")
  1. Calculate ICC coefficients in Python using rpy2:
import rpy2
from rpy2.robjects import IntVector, pandas2ri
from rpy2.robjects.packages import importr

psych = importr("psych")

values = rpy2.robjects.r.matrix(
    IntVector(
        [9,    2,   5,    8,
        6,    1,   3,    2,
        8,    4,   6,    8,
        7,    1,   2,    6,
        10,   5,   6,    9,
        6,   2,   4,    7]),
    ncol=4, byrow=True
)

icc = psych.ICC(values)

# Convert to Pandas DataFrame
icc_df = pandas2ri.rpy2py(icc[0])

Results:

                            type    ICC        F           df1   df2    p          lower bound   upper bound  
  Single_raters_absolute    ICC1    0.165783   1.794916    5.0   18.0   0.164720   -0.132910     0.722589     
  Single_random_raters      ICC2    0.289790   11.026650   5.0   15.0   0.000135   0.018791      0.761107     
  Single_fixed_raters       ICC3    0.714829   11.026650   5.0   15.0   0.000135   0.342447      0.945855     
  Average_raters_absolute   ICC1k   0.442871   1.794916    5.0   18.0   0.164720   -0.884193     0.912427     
  Average_random_raters     ICC2k   0.620080   11.026650   5.0   15.0   0.000135   0.071153      0.927240     
  Average_fixed_raters      ICC3k   0.909311   11.026650   5.0   15.0   0.000135   0.675657      0.985891  

There are several implementations of the ICC in R. These can be used from Python via the rpy2 package. Example:

from rpy2.robjects import DataFrame, FloatVector, IntVector
from rpy2.robjects.packages import importr
from math import isclose

groups = [1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 4, 4, 4,
          4, 5, 5, 5, 5, 6, 6, 6, 6, 7, 7, 7, 7, 8, 8, 8, 8]
values = [1, 2, 0, 1, 1, 3, 3, 2, 3, 8, 1, 4, 6, 4, 3,
          3, 6, 5, 5, 6, 7, 5, 6, 2, 8, 7, 7, 9, 9, 9, 9, 8]

r_icc = importr("ICC")
df = DataFrame({"groups": IntVector(groups),
                "values": FloatVector(values)})
icc_res = r_icc.ICCbare("groups", "values", data=df)
icc_val = icc_res[0] # icc_val now holds the icc value

# check whether icc value equals reference value
print(isclose(icc_val, 0.728, abs_tol=0.001))

You can find an implementation at ICC or Brain_Data.icc


The pengouin library computes ICC in 6 different ways, along with associated confidence levels and p values.

You can install it with pip install pingouin or conda install -c conda-forge pingouin

import pingouin as pg
data = pg.read_dataset('icc')
icc = pg.intraclass_corr(data=data, targets='Wine', raters='Judge',
                         ratings='Scores')
data.head()

|    |   Wine | Judge   |   Scores |
|---:|-------:|:--------|---------:|
|  0 |      1 | A       |        1 |
|  1 |      2 | A       |        1 |
|  2 |      3 | A       |        3 |
|  3 |      4 | A       |        6 |
|  4 |      5 | A       |        6 |
|  5 |      6 | A       |        7 |
|  6 |      7 | A       |        8 |
|  7 |      8 | A       |        9 |
|  8 |      1 | B       |        2 |
|  9 |      2 | B       |        3 |

icc

|    | Type   | Description             |   ICC |      F |   df1 |   df2 |        pval | CI95%        |
|---:|:-------|:------------------------|------:|-------:|------:|------:|------------:|:-------------|
|  0 | ICC1   | Single raters absolute  | 0.773 | 11.199 |     5 |    12 | 0.000346492 | [0.39, 0.96] |
|  1 | ICC2   | Single random raters    | 0.783 | 27.966 |     5 |    10 | 1.42573e-05 | [0.25, 0.96] |
|  2 | ICC3   | Single fixed raters     | 0.9   | 27.966 |     5 |    10 | 1.42573e-05 | [0.65, 0.98] |
|  3 | ICC1k  | Average raters absolute | 0.911 | 11.199 |     5 |    12 | 0.000346492 | [0.65, 0.99] |
|  4 | ICC2k  | Average random raters   | 0.915 | 27.966 |     5 |    10 | 1.42573e-05 | [0.5, 0.99]  |
|  5 | ICC3k  | Average fixed raters    | 0.964 | 27.966 |     5 |    10 | 1.42573e-05 | [0.85, 0.99] |