Inverse of $A^{-1}+B^{-1}$
Here's a concise proof: $$ \begin{align} A^{-1} + B^{-1} &= B^{-1} + A^{-1} \\ &= B^{-1}AA^{-1} + B^{-1}BA^{-1}\\ &= B^{-1}(A + B)A^{-1} \\ \end{align} $$ So $A^{-1} + B^{-1}$ is the product of invertible matrices and thus is invertible, with inverse equal to $$ \begin{align} (A^{-1} + B^{-1})^{-1} &= (B^{-1}(A + B)A^{-1})^{-1} \\ &= A(A + B)^{-1}B \\ \end{align} $$
\begin{equation} (A^{-1} + B^{-1}) A (A+B)^{-1} B = A^{-1}A(A+B)^{-1}B + B^{-1} A (A+B)^{-1} B \end{equation} by the distributive law. Now here comes the trick: Write $A = (A+B) - B$ to get
$$ A^{-1}A(A+B)^{-1}B + B^{-1} A (A+B)^{-1} B = (A+B)^{-1} B + B^{-1}(A+B)(A+B)^{-1} B -B^{-1} B (A+B)^{-1} B \\ = (A+B)^{-1}B + I - A+B)^{-1} B = I $$
Here's half of the solution. $$A(A+B)^{-1}B=((A+B)A^{-1})^{-1}B=(I+BA^{-1})^{-1}B$$ (Note that inversion reverses the order of products.) What happens if you do the same thing with $B$? We then get $$(B^{-1}(I+BA^{-1}))^{-1}=(B^{-1}+A^{-1})^{-1}$$ We didn't even have to multiply anything out!