Inversion of rotation matrix

Recall that rotation matrices are orthogonal therefore

$$A^{-1}=A^T$$

indeed note that

$$A^{-1}=\begin{bmatrix}\cos\alpha & -\sin\alpha \\ \sin\alpha & \cos\alpha\end{bmatrix}^{-1} =\begin{bmatrix}\cos(-\alpha) & -\sin(-\alpha)\\ \sin(-\alpha) & \cos(-\alpha)\end{bmatrix}=\begin{bmatrix}\cos\alpha & \sin\alpha \\ -\sin\alpha & \cos\alpha\end{bmatrix}=A^T$$


That's easy: $$\begin{pmatrix}\cos\alpha & -\sin\alpha \\ \sin\alpha & \cos\alpha\end{pmatrix}^{-1} =\begin{pmatrix}\cos\alpha & \sin\alpha \\ -\sin\alpha & \cos\alpha\end{pmatrix}$$