Is "Convolution operator" well-defined and injective?
\begin{align*} \left|\int_I \left(\int_I e^{-(x-t)^2}f(t)dt\right)^2dx\right| &= \left|\int_I \int_I \int_I e^{-(x-t)^2}f(t)e^{-(x-s)^2}f(s)dsdtdx\right| \\ &= \left|\int_I \int_I f(t)f(s)\left(\int_I e^{-(x-t)^2}e^{-(x-s)^2}dx\right)dsdt\right| \\ &\le \int_I\int_I |f(t)|\hspace{1mm}|f(s)| \left(\int_\mathbb{R} e^{-(x-t)^2}e^{-(x-s)^2}dx\right)dsdt \\ &\le C\int_I \int_I |f(t)|\hspace{1mm} |f(s)|dsdt \\ &= C\left(\int_I |f(t)|dt\right)^2 \end{align*}
I'm going to unclutter the situation and leave out some constants. If it works in the simplified case, you can throw constants at it later.
Suppose $f\in L^1(\mathbb R)$ and $g(t) = e^{-t^2}.$ For $x\in \mathbb R,$ define
$$(g*f)(x) = \int_{\mathbb R}g(x-t)f(t)\,dt.$$
That is certainly well defined for any $x,$ since $g\in L^\infty.$ To show $g*f\in L^2,$ note
$$|g*f(x)|^2 \le (\int_{\mathbb R}g(x-t)|f(t)|\,dt)^2$$ $$ = \|f\|_1^2(\int_{\mathbb R}(g(x-t)(|f(t)|/\|f\|_1)\,dt)^2.$$
Use Jensen to see the last expression is bounded above by
$$\|f\|_1^2\int_{\mathbb R}(g(x-t))^2(|f(t)|/\|f\|_1)\,dt.$$
Thus, using Fubini, we have
$$\int |g*f(x)|^2\,dx \le \|f\|_1^2 \int g(x)^2\,dx.$$
This proves $\|g*f\|_2 \le \|f\|_1\|g\|_2.$ Thus $f\to g*f$ is a bounded linear operator from $L^1$ to $L^2.$
For injectivity, I'll use some Fourier analysis. Let $F$ denote the Fourier transform. Then $F$ is an isometry on $L^2,$ and is injective on $L^1.$ Thus $g*f$ is the zero function iff $F(g*f)$ is the zero function. Now
$$F(g*f)(x) =F(g)(x)\cdot F(f)(x).$$
And as is well known, $F(g)>0$ everywhere. (In fact for the Gaussian $g,$ $F(g)$ is essentially $g,$ meaning $F(g)(x)= ag(bx)$ for some nonzero constants $a,b.$) Thus $F(g*f)=0$ iff $F(f)=0.$ And the later happens iff $f=0.$ It follow that $f\to g*f$ is injective.