Is it possible to continue training from a specific epoch?
You can save weights after every epoch by specifying a callback:
weight_save_callback = ModelCheckpoint('/path/to/weights.{epoch:02d}-{val_loss:.2f}.hdf5', monitor='val_loss', verbose=0, save_best_only=False, mode='auto')
model.fit(X_train,y_train,batch_size=batch_size,nb_epoch=nb_epoch,callbacks=[weight_save_callback])
This will save the weights after every epoch. You can then load them with:
model = Sequential()
model.add(...)
model.load('path/to/weights.hf5')
Of course your model needs to be the same in both cases.
You can add the initial_epoch
argument. This will allow you to continue training from a specific epoch.