Is it possible to derive induction for the church-encoded Nat?
Here's a related question I asked about homotopy type theory. I am also a little out my depth here, so take all this with a grain of salt.
I've proved that CN
is isomorphic to Nat
iff the free theorm for CN
holds. Furthermore, it's known that there are no free theorems under the law of excluded middle (in HoTT). I.e. with LEM, you could could define CN
s such as
foo : CN
foo T z s = if T is Bool then not z else z
which is not a proper church natural and would not be covered by the induction principle. Because excluded middle and HoTT are consistent with the type theories you are asking about (as far as I know), it follows that there will not be a proof of ind
.
It is known not to be provable because there are models of the calculus of constructions where the impredicative encoding of the natural numbers is not initial (i.e. doesn't satisfy induction). It does follow from relational parametricity as Phil Wadler has shown long time ago. Hence combining Wadler with internal relational parametricity ala Moulin and Bernardy may do the trick.
I think there is no formal proof that it's impossible, but generally expected that it can't be done. See e.g. the introduction to this paper by Aaron Stump.