Is it true that $0\in 1$?
Yes, $0\in1$, since $0=\emptyset$ and $1=\{\emptyset\}$. On the other hand, you are wrong when you assert that Peano axioms assert that $0=\emptyset$ and $1=\{\emptyset\}$.
It goes like this:
- $0=\emptyset $
- $n+1=n \cup\{n\}$
So $n=\{0,1,...,n-1\}$.
So $$m \leq n \implies m \subseteq n$$ $$m<n \implies m \in n$$