Is $\mathbb{Z}[x]$ a principal ideal domain?

If $\Bbb Z[X]$ were a principal ideal domain, then its quotient by the ideal generated by$~X$, an element that is obviously irreducible, would have to be a field. But it is clear that $\Bbb Z[X]/(X)\cong\Bbb Z$ which is not a field.


Hint: Consider the ideal $(2, x)$. Show that it's not principal.


Suppose $(2, x) = (p(x))$ for some polynomial $p(x) \in \mathbb Z[x]$. Since $2 \in (p(x))$, then $2 = p(x) q(x)$ for some polynomial $q(x)\in \mathbb Z[x]$. Since $\mathbb Z$ is an integral domain, we have $\operatorname{degree} p(x)q(x) = \operatorname{degree}p(x) + \operatorname{degree}q(x)$. Thus, both $p(x)$ and $q(x)$ must be constant. The only possible options for $p(x)$ are $\{\pm 1, \pm 2\}$. Each possibility gives a contradiction. I'll let you show this.


Here is a general result:

If $D$ is a domain, then $D[X]$ is a PID iff $D$ is a field.