Is Ruby pass by reference or by value?

The other answerers are all correct, but a friend asked me to explain this to him and what it really boils down to is how Ruby handles variables, so I thought I would share some simple pictures / explanations I wrote for him (apologies for the length and probably some oversimplification):


Q1: What happens when you assign a new variable str to a value of 'foo'?

str = 'foo'
str.object_id # => 2000

enter image description here

A: A label called str is created that points at the object 'foo', which for the state of this Ruby interpreter happens to be at memory location 2000.


Q2: What happens when you assign the existing variable str to a new object using =?

str = 'bar'.tap{|b| puts "bar: #{b.object_id}"} # bar: 2002
str.object_id # => 2002

enter image description here

A: The label str now points to a different object.


Q3: What happens when you assign a new variable = to str?

str2 = str
str2.object_id # => 2002

enter image description here

A: A new label called str2 is created that points at the same object as str.


Q4: What happens if the object referenced by str and str2 gets changed?

str2.replace 'baz'
str2 # => 'baz'
str  # => 'baz'
str.object_id # => 2002
str2.object_id # => 2002

enter image description here

A: Both labels still point at the same object, but that object itself has mutated (its contents have changed to be something else).


How does this relate to the original question?

It's basically the same as what happens in Q3/Q4; the method gets its own private copy of the variable / label (str2) that gets passed in to it (str). It can't change which object the label str points to, but it can change the contents of the object that they both reference to contain else:

str = 'foo'

def mutate(str2)
  puts "str2: #{str2.object_id}"
  str2.replace 'bar'
  str2 = 'baz'
  puts "str2: #{str2.object_id}"
end

str.object_id # => 2004
mutate(str) # str2: 2004, str2: 2006
str # => "bar"
str.object_id # => 2004

In traditional terminology, Ruby is strictly pass-by-value. But that's not really what you're asking here.

Ruby doesn't have any concept of a pure, non-reference value, so you certainly can't pass one to a method. Variables are always references to objects. In order to get an object that won't change out from under you, you need to dup or clone the object you're passed, thus giving an object that nobody else has a reference to. (Even this isn't bulletproof, though — both of the standard cloning methods do a shallow copy, so the instance variables of the clone still point to the same objects that the originals did. If the objects referenced by the ivars mutate, that will still show up in the copy, since it's referencing the same objects.)


Ruby uses "pass by object reference"

(Using Python's terminology.)

To say Ruby uses "pass by value" or "pass by reference" isn't really descriptive enough to be helpful. I think as most people know it these days, that terminology ("value" vs "reference") comes from C++.

In C++, "pass by value" means the function gets a copy of the variable and any changes to the copy don't change the original. That's true for objects too. If you pass an object variable by value then the whole object (including all of its members) get copied and any changes to the members don't change those members on the original object. (It's different if you pass a pointer by value but Ruby doesn't have pointers anyway, AFAIK.)

class A {
  public:
    int x;
};

void inc(A arg) {
  arg.x++;
  printf("in inc: %d\n", arg.x); // => 6
}

void inc(A* arg) {
  arg->x++;
  printf("in inc: %d\n", arg->x); // => 1
}

int main() {
  A a;
  a.x = 5;
  inc(a);
  printf("in main: %d\n", a.x); // => 5

  A* b = new A;
  b->x = 0;
  inc(b);
  printf("in main: %d\n", b->x); // => 1

  return 0;
}

Output:

in inc: 6
in main: 5
in inc: 1
in main: 1

In C++, "pass by reference" means the function gets access to the original variable. It can assign a whole new literal integer and the original variable will then have that value too.

void replace(A &arg) {
  A newA;
  newA.x = 10;
  arg = newA;
  printf("in replace: %d\n", arg.x);
}

int main() {
  A a;
  a.x = 5;
  replace(a);
  printf("in main: %d\n", a.x);

  return 0;
}

Output:

in replace: 10
in main: 10

Ruby uses pass by value (in the C++ sense) if the argument is not an object. But in Ruby everything is an object, so there really is no pass by value in the C++ sense in Ruby.

In Ruby, "pass by object reference" (to use Python's terminology) is used:

  • Inside the function, any of the object's members can have new values assigned to them and these changes will persist after the function returns.*
  • Inside the function, assigning a whole new object to the variable causes the variable to stop referencing the old object. But after the function returns, the original variable will still reference the old object.

Therefore Ruby does not use "pass by reference" in the C++ sense. If it did, then assigning a new object to a variable inside a function would cause the old object to be forgotten after the function returned.

class A
  attr_accessor :x
end

def inc(arg)
  arg.x += 1
  puts arg.x
end

def replace(arg)
  arg = A.new
  arg.x = 3
  puts arg.x
end

a = A.new
a.x = 1
puts a.x  # 1

inc a     # 2
puts a.x  # 2

replace a # 3
puts a.x  # 2

puts ''

def inc_var(arg)
  arg += 1
  puts arg
end

b = 1     # Even integers are objects in Ruby
puts b    # 1
inc_var b # 2
puts b    # 1

Output:

1
2
2
3
2

1
2
1

* This is why, in Ruby, if you want to modify an object inside a function but forget those changes when the function returns, then you must explicitly make a copy of the object before making your temporary changes to the copy.