Is $\sum_{n=1}^{\infty}{\frac{\sin(nx)}n}$ continuous?
To inspect the discontinuity of the summation, let's calculate the sum. By the Abel's theorem,
$$ f(x) := \sum_{n=1}^{\infty} \frac{\sin nx}{n} = \lim_{s\to 0^{+}} \sum_{n=1}^{\infty} \frac{\sin nx}{n} e^{-ns}. $$
By utilizing Taylor expansion of the logarithm,
\begin{align*} \sum_{n=1}^{\infty} \frac{\sin nx}{n} e^{-ns} &= \Im \sum_{n=1}^{\infty} \frac{e^{n(ix-s)}}{n} = - \Im \log (1 - e^{ix-s}) \\ &= -\Im \log (1 - e^{-s}\cos x - ie^{-s}\sin x) \\ &= \arctan \left(\frac{e^{-s}\sin x}{1 - e^{-s}\cos x}\right). \end{align*}
Thus taking $s \to 0^{+},$
$$ f(x) = \arctan \left(\frac{\sin x}{1 - \cos x}\right) = \arctan \left(\cot \frac{x}{2}\right) = \arctan \left(\tan \frac{\pi-x}{2}\right). $$
Therefore
$$ f(x) = \begin{cases} \frac{\pi - x}{2} & x \in (0, 2\pi),\\ 0 & x = 0, \\ f(x+2\pi), & x \in \Bbb{R}. \end{cases} $$
This shows a clear-cut jump discontinuity at each $x \in 2\pi \Bbb{Z}$.