Is the function T $\mathbb R$-linear?
Such map $T$ is not necessarily $\mathbb{R}$-linear. To see that consider the following counterexample.
Let $\pi_x : \mathbb{R}^2 \to \mathbb{R} : (x, y) \mapsto x$ the $x$-coordinate projection in $\mathbb{R}$, $e_x : \mathbb{R} \to \mathbb{R}^2 : x \mapsto (x, 0) $ the "canonical embedding" of the $x$-coordinate in $\mathbb{R}^2$, $$ f : \mathbb{R} \to \mathbb{R} : x \mapsto \begin{cases} \sin(\frac{1}{x}) &,& x \neq 0 \\ \hfill 0 \hfil &,& x = 0 \end{cases} $$ and $$ T : \mathbb{R}^2 \to \mathbb{R}^2 : (x, y) \mapsto e_x \circ f \circ \pi_x(x,y) = (f(x), 0 )$$
By definition, $T(0,0) = (0,0)$.
Now let $C \subseteq \mathbb{R}^2$ convex. Then $\pi_x(C) \subseteq \mathbb{R}$ is convex.
Since convex sets of $\mathbb{R}$ are intervals and $f$ maps intervals to intervals, it follows that $f \circ \pi_x(C) \subseteq \mathbb{R}$ is convex.
Therefore $ T(C) = e_x \circ f \circ \pi_x(C) \subseteq \mathbb{R}^2 $ is convex.
But $T$ is clearly not $\mathbb{R}$-linear.