Is The Inverse Laplace Transform of $e^{st}\operatorname{Log}\left(\frac{s+1}{s}\right)$ doable using inversion formula?

$\newcommand{\bbx}[1]{\,\bbox[15px,border:1px groove navy]{\displaystyle{#1}}\,} \newcommand{\braces}[1]{\left\lbrace\,{#1}\,\right\rbrace} \newcommand{\bracks}[1]{\left\lbrack\,{#1}\,\right\rbrack} \newcommand{\dd}{\mathrm{d}} \newcommand{\ds}[1]{\displaystyle{#1}} \newcommand{\expo}[1]{\,\mathrm{e}^{#1}\,} \newcommand{\ic}{\mathrm{i}} \newcommand{\mc}[1]{\mathcal{#1}} \newcommand{\mrm}[1]{\mathrm{#1}} \newcommand{\on}[1]{\operatorname{#1}} \newcommand{\pars}[1]{\left(\,{#1}\,\right)} \newcommand{\partiald}[3][]{\frac{\partial^{#1} #2}{\partial #3^{#1}}} \newcommand{\root}[2][]{\,\sqrt[#1]{\,{#2}\,}\,} \newcommand{\totald}[3][]{\frac{\mathrm{d}^{#1} #2}{\mathrm{d} #3^{#1}}} \newcommand{\verts}[1]{\left\vert\,{#1}\,\right\vert}$ $\ds{\LARGE\left. a\right)}$

One idea, in this particular case, is to get rid of the $\ds{\ln}$-function by introducing an integral representation of it. Namely, \begin{align} &\bbox[5px,#ffd]{\left.{1 \over 2\pi\ic} \int_{\gamma\ -\ \ic\infty}^{\gamma\ +\ \ic\infty} \expo{st}\ln\pars{s + 1 \over s} \,\dd s\,\right\vert_{\,\gamma\ >\ 0}} \\[5mm] = &\ \int_{\gamma\ -\ \ic\infty}^{\gamma\ +\ \ic\infty} \expo{st}\ \overbrace{\int_{0}^{1}{\dd x \over x + s}} ^{\ds{\ln\pars{s + 1 \over s}}}\ \,{\dd s \over 2\pi\ic} \\[5mm] = &\ \int_{0}^{1}\int_{\gamma\ -\ \ic\infty}^{\gamma\ +\ \ic\infty} {\expo{st} \over s + x}\,{\dd s \over 2\pi\ic}\,\dd x \\[5mm] = &\ \int_{0}^{1}\bracks{t > 0}\expo{-xt}\,\dd x = \bbx{\bracks{t > 0}\,{1 - \expo{-t} \over t}} \\ & \end{align}


$\ds{\LARGE\left. b\right): {\large Contour Integration}}$'

Note that $\ds{{s + 1 \over s} < 0}$ whenever $\ds{s \in \pars{-1,0}}$: It indicates that the $\mbox{$\ds{\ln}$-branch-cut}$ lies along $\ds{\bracks{-1,0}}$. Also, $\ds{{s \pm \ic\epsilon + 1 \over s \pm \ic\epsilon} \,\,\,\stackrel{{\rm as}\ \epsilon\ \to\ 0^{+}}{\sim} \,\,\, \pars{1 + s \over s} \mp {\epsilon \over s^{2}}\,\ic}$ such that the $\ds{\ln}$-$\ds{arg}$ is $\pars{-\pi}$ when $\ds{s}$ is above the real axis and $\ds{\pi}$ when it's below the real axis. \begin{align} &\bbox[5px,#ffd]{\left.{1 \over 2\pi\ic} \int_{\gamma\ -\ \ic\infty}^{\gamma\ +\ \ic\infty} \expo{st}\ln\pars{s + 1 \over s} \,\dd s\,\right\vert_{\,\gamma\ >\ 0}} \\[5mm] = &\ -\int_{-\infty}^{-1}\ln\pars{s + 1 \over s}\expo{ts} {\dd s \over 2\pi\ic}\label{1}\tag{1} \\[2mm] - &\ \int_{-1}^{0}\bracks{\ln\pars{-s - 1 \over s} - \ic\pi}\expo{ts} {\dd s \over 2\pi\ic} \\[2mm] - &\ \int_{0}^{-1}\bracks{\ln\pars{-s - 1 \over s} + \ic\pi}\expo{ts} {\dd s \over 2\pi\ic} \\[2mm] - & \int_{-1}^{-\infty}\ln\pars{s + 1 \over s}\expo{ts} {\dd s \over 2\pi\ic}\label{2}\tag{2} \end{align} I included (\ref{1}) and (\ref{2}) "by completeness" but, indeed, it's not necessary because the $\ds{\ln}$-branch-cut lies along $\ds{\bracks{-1,0}}$ albeit it guarantees the vanishing out of the integration along the"big-arc".

Then, \begin{align} &\bbox[5px,#ffd]{\left.{1 \over 2\pi\ic} \int_{\gamma\ -\ \ic\infty}^{\gamma\ +\ \ic\infty} \expo{st}\ln\pars{s + 1 \over s} \,\dd s\,\right\vert_{\,\gamma\ >\ 0}} \\[5mm] = &\ -\int_{0}^{1}\bracks{\ln\pars{-s + 1 \over s} - \ic\pi}\expo{-ts} {\dd s \over 2\pi\ic} \\[2mm] &\ \,\, + \int_{0}^{1}\bracks{\ln\pars{-s + 1 \over s} + \ic\pi}\expo{-ts} {\dd s \over 2\pi\ic} \\[5mm] = &\ \int_{0}^{1}\expo{-ts}\,\dd s = \bbx{1 - \expo{-t} \over t} \\ & \end{align}


Let's pick a sufficiently large $\gamma$ such that $|s|>1$, so that we can plug in

$$ \log\left(1+\frac1s\right)=\sum_{k=1}^\infty{(-1)^{k+1}\over ks^k} $$

and get

$$ \begin{aligned} f(t) &={1\over2\pi i}\int_{\gamma-i\infty}^{\gamma+i\infty}\sum_{k=1}^\infty{(-1)^{k+1}e^{st}\over s^k}\mathrm ds \\ &=\sum_{k=1}^\infty{(-1)^{k+1}\over k}{1\over2\pi i}\int_{\gamma-i\infty}^{\gamma+i\infty}{e^{st}\over s^k}\mathrm ds \end{aligned} $$

Provided that

$$ \mathcal L\{t^{k-1}\}(s)={(k-1)!\over s^k} $$

we can deduce

$$ \begin{aligned} f(t) &=\sum_{k=1}^\infty{(-t)^{k-1}\over k!} \\ &=-\frac1t\left[\sum_{k=0}^\infty{(-t)^k\over k!}-1\right] \\ &={1-e^{-t}\over t} \end{aligned} $$

where the final step follows from the fact that

$$ e^z=\sum_{n=0}^\infty{z^k\over n!} $$