Is there a closed form for $\int_0^\infty\frac{\tanh^3(x)}{x^2}dx$?
Following the suggestion I made in a comment, the integral can be rewritten as the contour integral $$ I_{3,2} = \frac{1}{2\pi i} \oint \frac{\operatorname{tahn}^3 z}{z^2} \log(-z) \, dz , $$ where the clockwise contour tightly encircles the positive real axis, which coincides with the branch cut of the logarithm. The reason that this integral is equivalent is because the branch jump across the real line of $\frac{1}{2\pi i} \log(-z)$ is precisely $1$.
The integrand has poles at all $z=\pm i\pi(k+\frac{1}{2})$, $k=0,1,2,\ldots$. Evaluating the residues we find \begin{align*} I_{3,2} &= \sum_{k=0}^\infty \frac{8\log\pi(k+\frac{1}{2})}{\pi^2 (2k+1)^2} - \frac{96 \log\pi(k+\frac{1}{2})-80}{\pi^4 (2k+1)^4} \\ &= \frac{5}{6} - \gamma - \frac{19 \log 2}{15} + 12 \log A - \log\pi + \frac{90 \zeta'(4)}{\pi^4} \\ &= 1.1547853133231762640590704519415261475352370924508924890\ldots \end{align*} The last two lines can be checked with Wolfram Alpha, where $\gamma$ is the Euler-Mascheroni constant, and $A$ is the Glaisher constant.
Rewrite the integrand and apply Taylor expansion to $\frac1{(1+e^{-2x})^3}$ so that $$\frac{\tanh^3x}{x^2}=\sum_{j\geq0}(-1)^j\binom{j+2}2 \frac{(1-e^{-2x})^3}{x^2}\binom{j+2}2e^{-2jx}.$$ Integrate term-wise to get (after some regrouping) $$\int_0^{\infty}\frac{\tanh^3x}{x^2}\,dx=\sum_{k=2}^{\infty}(-1)^k(8k^3+4k)\log k.$$ Perhaps there is some hope in view of what I see as $$\sum_{k=2}^{\infty}(-1)^k\log k=\log\sqrt{\frac2{\pi}};$$ which is a Wallis-type formula $$\frac23\cdot\frac45\cdot\frac67\cdots\frac{2k}{2k+1}\cdots=\sqrt{\frac2{\pi}}.$$
UPDATE. Using a divergent series approach on $\sum_k(-1)^kk^c$ and Will Sawin's comment, we can complete the solution as follows. Start with $\sum_{k\geq1}(-1)^kk^c=\zeta(-c)(2^{c+1}-1)$ to get the derivate $$\sum_{k\geq2}(-1)^ck^c\log k=-\zeta'(-c)(2^{c+1}-1)+\zeta(-c)2^{c+1}\log2.$$ Now, apply the following facts: $\zeta(-1)=-\frac1{12},\, \zeta'(-1)=\frac1{12}-\log A,\, \zeta(-3)=\frac1{120}$ and $$\zeta'(-3)=\frac1{120}\log(2\pi)-\frac{11}{720}+\frac1{120}\gamma-\frac{3\zeta'(4)}{4\pi^4}.$$ Next, put all these together and simplify \begin{align}\sum_{k\geq0}(-1)^k(8k^3+4k)\log k &=[-120\zeta'(-3)+128\zeta(-3)\log 2]+[-12\zeta'(-1)+16\zeta(-1)\log 2] \\ &=\frac56-\gamma-\log\pi-\frac{19}{15}\log2+12\log A+\frac{\zeta'(4)}{\zeta(4)}. \end{align}