Is there a Definite Integral Representation for $n^n$?
This may not be the line of thinking you are after, but it does give the integral you desire.
$$n^n=\int_0^n nx^{n-1}\ dx$$
$$\frac{\Gamma (\alpha)}{s^{\alpha}}=\int_{0}^{\infty }t^{\alpha-1}e^{-st}dt\tag{1}$$
$$\frac{\Gamma (s)}{s^{s}}=\int_{0}^{\infty }t^{s-1}e^{-st}dt\tag{2}$$
$$s^{-s}=\frac{1}{\Gamma (s)}\int_{0}^{\infty }t^{s-1}e^{-st}dt\tag{3}$$
$$s^{s}=\frac{\Gamma (s)}{\int_{0}^{\infty }t^{s-1}e^{-st}dt}\tag{4}$$
No need for the Lambert W function , respecting your limits and using $\Gamma$ we get that
$$ n^{n}=\frac{1}{\Gamma (n+1)}\int_{0}^{\infty }e^{-\frac{t^{ \frac{1}{n}}}{n}} dt $$
Update:
Lookup the Exponential Integral and its relationship with the Incomplete gamma function
$$E_{n}(x)=x^{n-1}\Gamma(1-n,x)\tag{1}$$
for $n=1-n$ and $x=\frac{1}{n}$ we get that :
$$E_{1-n}(\frac{1}{n})=\int_{1}^{\infty}\frac{e^{-\frac{t}{n}}}{t^{1-n}}dt = n^{n}\Gamma (n,\frac{1}{n})\tag{2}$$
Changing the integration limits to $[0,1]$ :
$$\int_{0}^{1}\frac{e^{-\frac{t}{n}}}{t^{1-n}}dt = n^{n}(\Gamma(n)-\Gamma (n,\frac{1}{n}))\tag{3}$$
Combining 2+3 we get the solution:
$$n^{n}=\frac{1}{\Gamma(n)}\int_{0}^{\infty}\frac{e^{-\frac{t}{n}}}{t^{1-n}}dt$$
The top result is due to the relationship :
$$n E_{1-n}(\frac{1}{n})= \int_{1}^{\infty} e^{-\frac{t^{\frac{1}{n}}}{n}} dt\tag{4}$$