Is there a highly transitive action of a finitely generated torsion simple group?

Yes, such groups exist. Simple groups in my paper "Palindromic subshifts and simple periodic groups of intermediate growth" are like that.


As you expressed interest in Thompson's group V in the comments -- the following is a highly transitive faithful permutation representation of V on $\mathbb{Z}$ (although as Ives de Cornulier has already mentioned this group is not a torsion group):

Let $r(m)$ denote the residue class $r+m\mathbb{Z}$, where $0 \leq r < m$. Given disjoint residue classes $r_1(m_1)$ and $r_2(m_2)$, let the class transposition $\tau_{r_1(m_1),r_2(m_2)}$ be the permutation of $\mathbb{Z}$ which interchanges $r_1+km_1$ and $r_2+km_2$ for every $k \in \mathbb{Z}$ and which fixes everything else.

Then we have $V \cong \langle \kappa, \lambda, \mu, \nu \rangle$, where $\kappa := \tau_{0(2),1(2)}$, $\lambda := \tau_{1(2),2(4)}$, $\mu := \tau_{0(2),1(4)}$ and $\nu := \tau_{1(4),2(4)}$ satisfy the defining relations

  • $\kappa^2 = \lambda^2 = \mu^2 = \nu^2 = 1$,

  • $\lambda\kappa\mu\kappa\lambda\nu\kappa\nu\mu\kappa\lambda\kappa\mu = 1$,

  • $\kappa\nu\lambda\kappa\mu\nu\kappa\lambda\nu\mu\nu\lambda\nu\mu = 1$,

  • $(\lambda\kappa\mu\kappa\lambda\nu)^3 = (\mu\kappa\lambda\kappa\mu\nu)^3 = 1$,

  • $(\lambda\nu\mu)^2\kappa(\mu\nu\lambda)^2\kappa = 1$,

  • $(\lambda\nu\mu\nu)^5 = 1$,

  • $(\lambda\kappa\nu\kappa\lambda\nu)^3\kappa\nu\kappa(\mu\kappa\nu\kappa\mu\nu)^3 \kappa\nu\kappa\nu = 1$,

  • $((\lambda\kappa\mu\nu)^2(\mu\kappa\lambda\nu)^2)^3 = 1$,

  • $(\lambda\nu\lambda\kappa\mu\kappa\mu\nu\lambda\nu\mu\kappa\mu\kappa)^4 = 1$,

  • $(\mu\nu\mu\kappa\lambda\kappa\lambda\nu\mu\nu\lambda\kappa\lambda\kappa)^4 = 1$,

  • $(\lambda\mu\kappa\lambda\kappa\mu\lambda\kappa\nu\kappa)^2 = 1$, and

  • $(\mu\lambda\kappa\mu\kappa\lambda\mu\kappa\nu\kappa)^2 = 1$

given in:

Graham Higman, Finitely presented infinite simple groups, Notes on Pure Mathematics, Department of Pure Mathematics, Australian National University, Canberra, 1974. MR0376874.