Is there any python function/library for calculate binomial confidence intervals?

Just noting because it hasn't been posted elsewhere here that statsmodels.stats.proportion.proportion_confint lets you get a binomial confidence interval with a variety of methods. It only does symmetric intervals, though.


I would say that R (or another stats package) would probably serve you better if you have the option. That said, if you only need the binomial confidence interval you probably don't need an entire library. Here's the function in my most naive translation from javascript.

def binP(N, p, x1, x2):
    p = float(p)
    q = p/(1-p)
    k = 0.0
    v = 1.0
    s = 0.0
    tot = 0.0

    while(k<=N):
            tot += v
            if(k >= x1 and k <= x2):
                    s += v
            if(tot > 10**30):
                    s = s/10**30
                    tot = tot/10**30
                    v = v/10**30
            k += 1
            v = v*q*(N+1-k)/k
    return s/tot

def calcBin(vx, vN, vCL = 95):
    '''
    Calculate the exact confidence interval for a binomial proportion

    Usage:
    >>> calcBin(13,100)    
    (0.07107391357421874, 0.21204372406005856)
    >>> calcBin(4,7)   
    (0.18405151367187494, 0.9010086059570312)
    ''' 
    vx = float(vx)
    vN = float(vN)
    #Set the confidence bounds
    vTU = (100 - float(vCL))/2
    vTL = vTU

    vP = vx/vN
    if(vx==0):
            dl = 0.0
    else:
            v = vP/2
            vsL = 0
            vsH = vP
            p = vTL/100

            while((vsH-vsL) > 10**-5):
                    if(binP(vN, v, vx, vN) > p):
                            vsH = v
                            v = (vsL+v)/2
                    else:
                            vsL = v
                            v = (v+vsH)/2
            dl = v

    if(vx==vN):
            ul = 1.0
    else:
            v = (1+vP)/2
            vsL =vP
            vsH = 1
            p = vTU/100
            while((vsH-vsL) > 10**-5):
                    if(binP(vN, v, 0, vx) < p):
                            vsH = v
                            v = (vsL+v)/2
                    else:
                            vsL = v
                            v = (v+vsH)/2
            ul = v
    return (dl, ul)