Is this projection matrix?
Hint:
You need to prove that $$\left((I-A)^T\right)^T = (I-A)^T, \quad \left((I-A)^T\right)^2 = (I-A)^T.$$
I don't understand what you mean by "we can see that $ I-A=I-A^2 => 0=A-A^2$ $A^2=A$ then $A-A=0$".
However
$$\begin{aligned} \left(I - A^T\right)^2 & = (I-A)^T(I-A)^T\\ &=\left((I-A)(I-A)\right)^T\\ &= (I-2A + A^2)^T\\ &=(I-A)^T \end{aligned}$$
So $(I-A)^T$ which satisfies the two required identities to be a projection is indeed a projection.