Java Streams - Get a "symmetric difference list" from two other lists

Based on your own code, there is a straight-forward solution:

List<Car> disjoint = Stream.concat(
    bigCarList.stream().filter(c->!smallCarList.contains(c)),
    smallCarList.stream().filter(c->!bigCarList.contains(c))
).collect(Collectors.toList());

Just filter one list for all items not contained in the other and vice versa and concatenate both results. That works fairly well for small lists and before consider optimized solutions like hashing or making the result distinct() you should ask yourself why you are using lists if you don’t want neither, duplicates nor a specific order.

It seems like you actually want Sets, not Lists. If you use Sets, Tagir Valeev’s solution is appropriate. But it is not working with the actual semantics of Lists, i.e. doesn’t work if the source lists contain duplicates.


But if you are using Sets, the code can be even simpler:

Set<Car> disjoint = Stream.concat(bigCarSet.stream(), smallCarSet.stream())
  .collect(Collectors.toMap(Function.identity(), t->true, (a,b)->null))
  .keySet();

This uses the toMap collector which creates a Map (the value is irrelevant, we simply map to true here) and uses a merge function to handle duplicates. Since for two sets, duplicates can only occur when an item is contained in both sets, these are the items we want remove.

The documentation of Collectors.toMap says that the merge function is treated “as supplied to Map.merge(Object, Object, BiFunction)” and we can learn from there, that simply mapping the duplicate pair to null will remove the entry.

So afterwards, the keySet() of the map contains the disjoint set.


Something like this may work:

Stream.concat(bigCarList.stream(), smallCarList.stream())
      .collect(groupingBy(Function.identity(), counting()))
      .entrySet().stream()
      .filter(e -> e.getValue().equals(1L))
      .map(Map.Entry::getKey)
      .collect(toList());

Here we first collect all the cars to the Map<Car, Long> where value is the number of such cars encountered. After that, we filter this Map leaving only cars that are encountered exactly once, drop the counts and collect to the final List.