heapq max heap code example

Example 1: python heapq

>>> import heapq
>>> heap = []
>>> heapq.heappush(heap, (5, 'write code'))
>>> heapq.heappush(heap, (7, 'release product'))
>>> heapq.heappush(heap, (1, 'write spec'))
>>> heapq.heappush(heap, (3, 'create tests'))
>>> heapq.heappop(heap)#pops smallest
(1, 'write spec')
>>> heapq.nlargest(2,heap)#displays n largest values without popping
[(7, 'release product'),(5, 'write code')]
>>> heapq.nsmallest(2,heap)#displays n smallest values without popping
[(3, 'create tests'),(5, 'write code')]
>>> heap = [1, 3, 5, 7, 9, 2, 4, 6, 8, 0]
>>> heapq.heapify(heap)#converts a list to heap
>>> heap
[0, 1, 2, 6, 3, 5, 4, 7, 8, 9]
>>> def heapsort(iterable):
...     h = []
...     for value in iterable:
...         heappush(h, value)
...     return [heappop(h) for i in range(len(h))]
...
>>> heapsort([1, 3, 5, 7, 9, 2, 4, 6, 8, 0])
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

Example 2: max heap c++

#include <iostream>
using namespace std;
void max_heap(int *a, int m, int n) {
   int j, t;
   t = a[m];
   j = 2 * m;
   while (j <= n) {
      if (j < n && a[j+1] > a[j])
         j = j + 1;
      if (t > a[j])
         break;
      else if (t <= a[j]) {
         a[j / 2] = a[j];
         j = 2 * j;
      }
   }
   a[j/2] = t;
   return;
}
void build_maxheap(int *a,int n) {
   int k;
   for(k = n/2; k >= 1; k--) {
      max_heap(a,k,n);
   }
}
int main() {
   int n, i;
   cout<<"enter no of elements of array\n";
   cin>>n;
   int a[30];
   for (i = 1; i <= n; i++) {
      cout<<"enter elements"<<" "<<(i)<<endl;
      cin>>a[i];
   }
   build_maxheap(a,n);
   cout<<"Max Heap\n";
   for (i = 1; i <= n; i++) {
      cout<<a[i]<<endl;
   }
}

Example 3: heap sort heapify and max heap in binary tree

Implementation of heap sort in C:

#include <stdio.h>
int main()
{
   int heap[10], array_size, i, j, c, root, temporary;
   printf("\n Enter size of array to be sorted :");
   scanf("%d", &array_size);
   printf("\n Enter the elements of array : ");
   for (i = 0; i < array_size; i++)
      scanf("%d", &heap[i]);
   for (i = 1; i < array_size; i++)
   {
       c = i;
       do
       {
           root = (c - 1) / 2;            
           if (heap[root] < heap[c])   /* to create MAX heap array */
           {                                  // if child is greater than parent swap them
               temporary = heap[root];      // as structure is of complete binary tree
               heap[root] = heap[c];     // it took logn steps to reach from root to leaf
               heap[c] = temporary;
           }
           c = root;
       } while (c != 0);
   }
   printf("Heap array : ");
   for (i = 0; i < array_size; i++)
       printf("%d\t ", heap[i]);         //printing the heap array
   for (j = array_size - 1; j >= 0; j--)
   {
       temporary = heap[0];
       heap[0] = heap[j] ;   /* swap max element with rightmost leaf element */
       heap[j] = temporary;
       root = 0;
       do
       {
           c = 2 * root + 1;    /* left node of root element */
           if ((heap[c] < heap[c + 1]) && c < j-1)
               c++;
           if (heap[root]<heap[c] && c<j)    /* again rearrange to max heap array */
           {
               temporary = heap[root];
               heap[root] = heap[c];
               heap[c] = temporary;
           }
           root = c;
       } while (c < j);
   }
   printf("\n The sorted array is : ");
   for (i = 0; i < array_size; i++)
      printf("\t %d", heap[i]);
}