javascript Math methods code example
Example 1: javascript math methods
abs(x) Returns the absolute value of x
acos(x) Returns the arccosine of x, in radians
acosh(x) Returns the hyperbolic arccosine of x
asin(x) Returns the arcsine of x, in radians
asinh(x) Returns the hyperbolic arcsine of x
atan(x) Returns the arctangent of x as a numeric value between -PI/2 and PI/2 radians
atan2(y, x) Returns the arctangent of the quotient of its arguments
atanh(x) Returns the hyperbolic arctangent of x
cbrt(x) Returns the cubic root of x
ceil(x) Returns x, rounded upwards to the nearest integer
cos(x) Returns the cosine of x (x is in radians)
cosh(x) Returns the hyperbolic cosine of x
exp(x) Returns the value of Ex
floor(x) Returns x, rounded downwards to the nearest integer
log(x) Returns the natural logarithm (base E) of x
max(x, y, z, ..., n) Returns the number with the highest value
min(x, y, z, ..., n) Returns the number with the lowest value
pow(x, y) Returns the value of x to the power of y
random() Returns a random number between 0 and 1
round(x) Rounds x to the nearest integer
sin(x) Returns the sine of x (x is in radians)
sinh(x) Returns the hyperbolic sine of x
sqrt(x) Returns the square root of x
tan(x) Returns the tangent of an angle
tanh(x) Returns the hyperbolic tangent of a number
trunc(x) Returns the integer part of a number (x)
Example 2: js maths
JS Numbers and Math:
Number Properties:
MAX_VALUE
The maximum numeric value representable in JavaScript
MIN_VALUE
Smallest positive numeric value representable in JavaScript
NaN
The “Not-a-Number” value
NEGATIVE_INFINITY
The negative Infinity value
POSITIVE_INFINITY
Positive Infinity value
Number Methods:
toExponential()
Returns a string with a rounded number written as exponential notation
toFixed()
Returns the string of a number with a specified number of decimals
toPrecision()
String of a number written with a specified length
toString()
Returns a number as a string
valueOf()
Returns a number as a number
Math Properties:
E Euler’s number
LN2 The natural logarithm of 2
LN10 Natural logarithm of 10
LOG2E Base 2 logarithm of E
LOG10E Base 10 logarithm of E
PI The number PI
SQRT1_2 Square root of 1/2
SQRT2 The square root of 2
Math Methods:
abs(x)
Returns the absolute (positive) value of x
acos(x)
The arccosine of x, in radians
asin(x)
Arcsine of x, in radians
atan(x)
The arctangent of x as a numeric value
atan2(y,x)
Arctangent of the quotient of its arguments
ceil(x)
Value of x rounded up to its nearest integer
cos(x)
The cosine of x (x is in radians)
exp(x)
Value of Ex
floor(x)
The value of x rounded down to its nearest integer
log(x)
The natural logarithm (base E) of x
max(x,y,z,...,n)
Returns the number with the highest value
min(x,y,z,...,n)
Same for the number with the lowest value
pow(x,y)
X to the power of y
random()
Returns a random number between 0 and 1
round(x)
The value of x rounded to its nearest integer
sin(x)
The sine of x (x is in radians)
sqrt(x)
Square root of x
tan(x)
The tangent of an angle
Example 3: js maths objects
E: 2.718281828459045
LN2: 0.6931471805599453
LN10: 2.302585092994046
LOG2E: 1.4426950408889634
LOG10E: 0.4342944819032518
PI: 3.141592653589793
SQRT1_2: 0.7071067811865476
SQRT2: 1.4142135623730951
abs: ƒ abs()
acos: ƒ acos()
acosh: ƒ acosh()
asin: ƒ asin()
asinh: ƒ asinh()
atan: ƒ atan()
atan2: ƒ atan2()
atanh: ƒ atanh()
cbrt: ƒ cbrt()
ceil: ƒ ceil()
clz32: ƒ clz32()
cos: ƒ cos()
cosh: ƒ cosh()
exp: ƒ exp()
expm1: ƒ expm1()
floor: ƒ floor()
fround: ƒ fround()
hypot: ƒ hypot()
imul: ƒ imul()
log: ƒ log()
log1p: ƒ log1p()
log2: ƒ log2()
log10: ƒ log10()
max: ƒ max()
min: ƒ min()
pow: ƒ pow()
random: ƒ random()
round: ƒ round()
sign: ƒ sign()
sin: ƒ sin()
sinh: ƒ sinh()
sqrt: ƒ sqrt()
tan: ƒ tan()
tanh: ƒ tanh()
trunc: ƒ trunc()
Symbol(Symbol.toStringTag): "Math"
__proto__: Object
Example 4: math in html
The top-level element in MathML is <math>. Every valid MathML instance must be wrapped in <math> tags. In addition you must not nest a second <math> element in another, but you can have an arbitrary number of other child elements in it.
Examples
Theorem of Pythagoras
HTML5 notation
<!DOCTYPE html>
<html>
<head>
<title>MathML in HTML5</title>
</head>
<body>
<math>
<mrow>
<mrow>
<msup>
<mi>a</mi>
<mn>2</mn>
</msup>
<mo>+</mo>
<msup>
<mi>b</mi>
<mn>2</mn>
</msup>
</mrow>
<mo>=</mo>
<msup>
<mi>c</mi>
<mn>2</mn>
</msup>
</mrow>
</math>
</body>
</html>