Join two data frames, select all columns from one and some columns from the other

Asterisk (*) works with alias. Ex:

from pyspark.sql.functions import *

df1 = df1.alias('df1')
df2 = df2.alias('df2')

df1.join(df2, df1.id == df2.id).select('df1.*')

Not sure if the most efficient way, but this worked for me:

from pyspark.sql.functions import col

df1.alias('a').join(df2.alias('b'),col('b.id') == col('a.id')).select([col('a.'+xx) for xx in a.columns] + [col('b.other1'),col('b.other2')])

The trick is in:

[col('a.'+xx) for xx in a.columns] : all columns in a

[col('b.other1'),col('b.other2')] : some columns of b

Without using alias.

df1.join(df2, df1.id == df2.id).select(df1["*"],df2["other"])