jSON with python code example
Example 1: print json python
import json
uglyjson = '{"firstnam":"James","surname":"Bond","mobile":["007-700-007","001-007-007-0007"]}'
#json.load method converts JSON string to Python Object
parsed = json.loads(uglyjson)
print(json.dumps(parsed, indent=2, sort_keys=True))
Example 2: load json
import json
with open('data.txt') as json_file:
data = json.load(json_file)
Example 3: json python
import json
# some JSON:
x = '{ "name":"John", "age":30, "city":"New York"}'
# parse x:
y = json.loads(x)
# the result is a Python dictionary:
print(y["age"])
Example 4: Json in python
import json
json_file = json.load(open("your file.json", "r", encoding="utf-8"))
# For see if you don't have error:
print(json_file)
Example 5: python to json
# a Python object (dict):
x = {
"name": "John",
"age": 30,
"city": "New York"
}
# convert into JSON:
y = json.dumps(x)
Example 6: python import json data
# Basic syntax:
import ast
# Create function to import JSON-formatted data:
def import_json(filename):
for line in open(filename):
yield ast.literal_eval(line)
# Where ast.literal_eval allows you to safely evaluate the json data.
# See the following link for more on this:
# https://stackoverflow.com/questions/15197673/using-pythons-eval-vs-ast-literal-eval
# Import json data
data = list(import_json("/path/to/filename.json"))
# (Optional) convert json data to pandas dataframe:
dataframe = pd.DataFrame.from_dict(data)
# Where keys become column names