Keras, How to get the output of each layer?

You can easily get the outputs of any layer by using: model.layers[index].output

For all layers use this:

from keras import backend as K

inp = model.input                                           # input placeholder
outputs = [layer.output for layer in model.layers]          # all layer outputs
functors = [K.function([inp, K.learning_phase()], [out]) for out in outputs]    # evaluation functions

# Testing
test = np.random.random(input_shape)[np.newaxis,...]
layer_outs = [func([test, 1.]) for func in functors]
print layer_outs

Note: To simulate Dropout use learning_phase as 1. in layer_outs otherwise use 0.

Edit: (based on comments)

K.function creates theano/tensorflow tensor functions which is later used to get the output from the symbolic graph given the input.

Now K.learning_phase() is required as an input as many Keras layers like Dropout/Batchnomalization depend on it to change behavior during training and test time.

So if you remove the dropout layer in your code you can simply use:

from keras import backend as K

inp = model.input                                           # input placeholder
outputs = [layer.output for layer in model.layers]          # all layer outputs
functors = [K.function([inp], [out]) for out in outputs]    # evaluation functions

# Testing
test = np.random.random(input_shape)[np.newaxis,...]
layer_outs = [func([test]) for func in functors]
print layer_outs

Edit 2: More optimized

I just realized that the previous answer is not that optimized as for each function evaluation the data will be transferred CPU->GPU memory and also the tensor calculations needs to be done for the lower layers over-n-over.

Instead this is a much better way as you don't need multiple functions but a single function giving you the list of all outputs:

from keras import backend as K

inp = model.input                                           # input placeholder
outputs = [layer.output for layer in model.layers]          # all layer outputs
functor = K.function([inp, K.learning_phase()], outputs )   # evaluation function

# Testing
test = np.random.random(input_shape)[np.newaxis,...]
layer_outs = functor([test, 1.])
print layer_outs

Based on all the good answers of this thread, I wrote a library to fetch the output of each layer. It abstracts all the complexity and has been designed to be as user-friendly as possible:

https://github.com/philipperemy/keract

It handles almost all the edge cases.

Hope it helps!


From https://keras.io/getting-started/faq/#how-can-i-obtain-the-output-of-an-intermediate-layer

One simple way is to create a new Model that will output the layers that you are interested in:

from keras.models import Model

model = ...  # include here your original model

layer_name = 'my_layer'
intermediate_layer_model = Model(inputs=model.input,
                                 outputs=model.get_layer(layer_name).output)
intermediate_output = intermediate_layer_model.predict(data)

Alternatively, you can build a Keras function that will return the output of a certain layer given a certain input, for example:

from keras import backend as K

# with a Sequential model
get_3rd_layer_output = K.function([model.layers[0].input],
                                  [model.layers[3].output])
layer_output = get_3rd_layer_output([x])[0]