Let $a_1=1$ and $a_n=n(a_{n-1}+1)$ for $n=2,3,...$.
Let's define $b_n := \dfrac{a_n}{n!}$. Thus, from the recurrence formula:
$$\frac{a_n}{n!}=\frac{a_{n-1}}{(n-1)!}+\frac{1}{(n-1)!}\Rightarrow b_n=b_{n-1}+\frac{1}{(n-1)!}$$
Therefore summing from $1$ to $n-1$, we get:
$$b_n = \sum_{k=0}^{n-1} \frac{1}{k!} \to e$$
Therefore:
$$\lim_{n\to \infty} \frac{a_n+1}{n!}= \lim_{n\to \infty} \frac{a_n}{n!}=\lim_{n\to \infty}b_n = e$$
$$\begin{align} a_{n}&=na_{n-1}+n\\ &=n[(n-1)a_{n-2}+(n-1)]+n\\ &=n(n-1)[(n-2)a_{n-3} + (n-2)]+n(n-1)+n\\ & \phantom{a bit of space here would be nice}\vdots\\ &=\left[n(n-1)(n-2)\dots 3 \cdot 2\cdot 1\right]\left( 1+\frac{1}{1!}+\frac{1}{2!}+\cdots +\frac{1}{(n-1)!} \right)\\ &=n!\left(1+\frac{1}{1!}+\frac{1}{2!}+\cdots +\frac{1}{(n-1)!}\right)\rightarrow n!e, \quad (n \to \infty) \end{align} $$