Let $b_{n}$ denote the number of compositions of $n$ into $k$ parts, where each part is one or two. Find the generating series for $b_{n}$
In order to calculate the generating series -
Let {1,2}$^{}$ be the set of compositions with k parts, each of which is either 1 or 2.
Then, applying the "Product Lemma" $$\varphi_{s}(x) = (\varphi_{(1,2)} (x))^{k} = (x+x^{2})^{k} $$
Proving -
A composition of n with k parts will have $i$ parts equal to 2, for some $0\le i\le k$. Note that the number of parts equal to 1 is $k-i$, and $n = (k-i) + 2i$, giving $i = n-k$. There are $k$ positions for the $n-k$ parts equal to 2, so there are a total of {k \choose n-k} compositions of $n$ into $k$ parts, each either $1$ or $2$. Note that $0\le i\le k$ implies $k\le n\le 2k$, and the number of compositions is zero otherwise.