lightweight python library to query city/state name by zip code?
Try pyzipcode. An example from the home page:
>>> from pyzipcode import ZipCodeDatabase
>>> zcdb = ZipCodeDatabase()
>>> zipcode = zcdb[54115]
>>> zipcode.zip
u'54115'
>>> zipcode.city
u'De Pere'
>>> zipcode.state
u'WI'
>>> zipcode.longitude
-88.078959999999995
>>> zipcode.latitude
44.42042
>>> zipcode.timezone
-6
Use this library uszipcode.
Advantages:
- Data is up-to-date, super rich info, way richer and more up-to-date than
zipcode
andpyzipcode
and any other python zipcode library. - Query is super easy, and there are like 20+ built-in query pattern you can use. And you can customize your query anyway you want.
- Support fuzzy string match for city and state. You don't need to use the exact name.
>>> from uszipcode import ZipcodeSearchEngine
>>> search = ZipcodeSearchEngine()
>>> zipcode = search.by_zipcode("10001")
>>> print(zipcode)
{
"City": "New York",
"Density": 34035.48387096774,
"HouseOfUnits": 12476,
"LandArea": 0.62,
"Latitude": 40.75368539999999,
"Longitude": -73.9991637,
"NEBoundLatitude": 40.8282129,
"NEBoundLongitude": -73.9321059,
"Population": 21102,
"SWBoundLatitude": 40.743451,
"SWBoungLongitude": -74.00794499999998,
"State": "NY",
"TotalWages": 1031960117.0,
"WaterArea": 0.0,
"Wealthy": 48903.42702113544,
"Zipcode": "10001",
"ZipcodeType": "Standard"
}
# fuzzy city, state search, case insensitive, spelling mistake tolerant
# all zipcode in new york
>>> result = search.by_city_and_state(city="newyork", state="NY")
>>> search.export_to_csv(result, "result.csv")
Very easy to use to build advance search
>>> result = search.find(city="new york",
... wealthy=100000, sort_by="Wealthy", ascending=False, returns=10)
I built Zipcodes to remove the dependency on SQLite that all other zipcode libraries had. SQLite is not available in an AWS Lambda environment, so this library provides a lightweight, powerful querying interface over a gzipped JSON file containing U.S. zipcode data. Below are some examples:
Matching:
>>> # Handles of Zip+4 zip-codes nicely. :)
>>> pprint(zipcodes.matching('77429-1145'))
[{'zip_code': '77429',
'zip_code_type': 'STANDARD',
'city': 'CYPRESS',
'state': 'TX',
'lat': 29.96,
'long': -95.69,
'world_region': 'NA',
'country': 'US',
'active': True}]
Validity:
>>> # Whether the zip-code exists within the database.
>>> print(zipcodes.is_valid('06463'))
False
Similarity:
>>> # Search for zipcodes that begin with a pattern.
>>> pprint(zipcodes.similar_to('0643'))
[{'active': True,
'city': 'GUILFORD',
'country': 'US',
'lat': 41.28,
'long': -72.67,
'state': 'CT',
'world_region': 'NA',
'zip_code': '06437',
'zip_code_type': 'STANDARD'},
{'active': True,
'city': 'HADDAM',
'country': 'US',
'lat': 41.45,
'long': -72.5,
'state': 'CT',
'world_region': 'NA',
'zip_code': '06438',
'zip_code_type': 'STANDARD'},
... # remaining results truncated for readability...
]
Advanced filtering:
>>> # Arbitrary nesting of similar_to and filter_by calls, allowing for great precision while filtering.
>>> pprint(zipcodes.similar_to('2', zips=zipcodes.filter_by(zipcodes.list_all(), active=True, city='WINDSOR')))
[{'active': True,
'city': 'WINDSOR',
'country': 'US',
'lat': 33.48,
'long': -81.51,
'state': 'SC',
'world_region': 'NA',
'zip_code': '29856',
'zip_code_type': 'STANDARD'},
{'active': True,
'city': 'WINDSOR',
'country': 'US',
'lat': 36.8,
'long': -76.73,
'state': 'VA',
'world_region': 'NA',
'zip_code': '23487',
'zip_code_type': 'STANDARD'},
{'active': True,
'city': 'WINDSOR',
'country': 'US',
'lat': 36.0,
'long': -76.94,
'state': 'NC',
'world_region': 'NA',
'zip_code': '27983',
'zip_code_type': 'STANDARD'}]