Limit evaluation.

You have

$$\begin{equation}\begin{aligned} \lim_{k \rightarrow 0} \left[\left(v_o - \frac{mg}{k}\right)e^{-\frac{kt}{m}} + \frac{mg}{k} \right] & = \lim_{k \rightarrow 0} \left[v_oe^{-\frac{kt}{m}} - \frac{mg}{k}e^{-\frac{kt}{m}} + \frac{mg}{k} \right] \\ & = \lim_{k \rightarrow 0} \left[v_{o}e^{-\frac{kt}{m}} + \frac{mg\left(1 - e^{-\frac{kt}{m}}\right)}{k} \right] \\ \end{aligned}\end{equation}\tag{1}\label{eq1A}$$

The limit of the first term, i.e., $v_{o}e^{-\frac{kt}{m}}$, is just simply $v_{o}$. For the second term, since the limit becomes it going to $\frac{0}{0}$, using L'Hôpital's rule, gives

$$\begin{equation}\begin{aligned} \lim_{k \rightarrow 0} \frac{mg\left(1 - e^{-\frac{kt}{m}}\right)}{k} & = \lim_{k \rightarrow 0} \frac{mg\left(-e^{-\frac{kt}{m}}\left(-\frac{t}{m}\right)\right)}{1} \\ & = mg\left(\frac{t}{m}\right) \\ & = gt \end{aligned}\end{equation}\tag{2}\label{eq2A}$$

You could also have used dnfu's question comment listed fact to get the same value. The combined result from \eqref{eq1A} thus gives

$$\lim_{k \rightarrow 0} \left[\left(v_o - \frac{mg}{k}\right)e^{-\frac{kt}{m}} + \frac{mg}{k} \right] = v_{o} + gt \tag{3}\label{eq3A}$$


As an alternative, we have that by standard limit $\frac{e^x-1}{x} \to 1$ as $x \to 0$

$$ \frac{mg\left(1 - e^{-\frac{kt}{m}}\right)}{k} =gt \,\frac{ e^{-\frac{kt}{m}}-1}{-\frac{kt}m} \to gt \cdot 1= g t$$

and the result follows.

Tags:

Limits