Limit for $e$ and $\frac{1}{e}$

\begin{align*}\lim_{n\to\infty}\left( 1 - \frac{1}{n} \right)^n &= \lim_{n\to\infty}\left(\frac{n-1}{n}\right)^n = \lim_{n\to\infty}\left(\frac{1}{\frac{n}{n-1}}\right)^n = \lim_{n\to\infty}\frac{1}{\left(\frac{n}{n-1}\right)^n} \\ &= \lim_{n\to\infty}\frac{1}{\left(1 + \frac{1}{n-1}\right)^n} = \lim_{n\to\infty} \left(\frac{1}{\left(1 + \frac{1}{n-1}\right)^{n-1}} \cdot \frac{1}{1 + \frac{1}{n-1}} \right) \\ &= \lim_{n\to\infty} \frac{1}{\left(1 + \frac{1}{n-1}\right)^{n-1}} = \lim_{n\to\infty} \frac{1}{\left(1 + \frac{1}{n}\right)^{n}} = \frac{1}{e} \\ &= e^{-1} \end{align*}


Consider proving the reciprocal, i.e. $$ \lim \left(1 - \frac 1n\right)^{-n} = \mathrm e. $$ The expression inside could be rewritten as $$ \left(1 - \frac 1n \right)^{-n} = \left(\frac {n-1}n\right)^{-n} = \left(\frac n{n-1}\right)^n = \left(1 + \frac 1{n-1}\right)^n = \left(1 + \frac 1{n-1}\right)^{n-1} \cdot \left(1 + \frac 1{n-1}\right). $$ Now use the definition of $\mathrm e$: $$ \lim_n \left(1 + \frac 1{n-1}\right)^{n-1} = \mathrm e. $$ Since $$ \lim_n \left(1 + \frac 1{n-1}\right) = 1, $$ we conclude that $$ \lim_n \left(1 - \frac 1n \right)^{-n} = \lim_n \left(1 + \frac 1{n-1}\right)^{n-1} \cdot \lim_n \left(1 + \frac 1{n-1}\right) = \mathrm e \cdot 1 = \mathrm e. $$ by the law of arithmetic operations of limits.

Therefore the original limit is $1/\mathrm e$.