Load CSV to Pandas MultiIndex DataFrame
You could use pd.read_csv
:
>>> df = pd.read_csv("test_data2.csv", index_col=[0,1], skipinitialspace=True)
>>> df
dep freq arr code mode
from to
RGBOXFD RGBPADTON 127 0 27 99999 2
RGBPADTON 127 0 33 99999 2
RGBRDLEY 127 0 1425 99999 2
RGBCHOLSEY 127 0 52 99999 2
RGBMDNHEAD 127 0 91 99999 2
RGBDIDCOTP RGBPADTON 127 0 46 99999 2
RGBPADTON 127 0 3 99999 2
RGBCHOLSEY 127 0 61 99999 2
RGBRDLEY 127 0 1430 99999 2
RGBPADTON 127 0 115 99999 2
where I've used skipinitialspace=True
to get rid of those annoying spaces in the header row.
from_csv() works similarly:
import pandas as pd
df = pd.DataFrame.from_csv(
'data.txt',
index_col = [0, 1]
)
print df
--output:--
dep freq arr code mode
from to
RGBOXFD RGBPADTON 127 0 27 99999 2
RGBPADTON 127 0 33 99999 2
RGBRDLEY 127 0 1425 99999 2
RGBCHOLSEY 127 0 52 99999 2
RGBMDNHEAD 127 0 91 99999 2
RGBDIDCOTP RGBPADTON 127 0 46 99999 2
RGBPADTON 127 0 3 99999 2
RGBCHOLSEY 127 0 61 99999 2
RGBRDLEY 127 0 1430 99999 2
RGBPADTON 127 0 115 99999 2
http://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.from_csv.html#pandas.DataFrame.from_csv
From this discussion,
https://github.com/pydata/pandas/issues/4916
it looks like read_csv() was implemented to allow you to set more options, which makes from_csv() superfluous.