Example 1: loc and iloc in pandas
iloc - default indexes (system generated)
loc - table indexes or we manually given indexes
Example 2: pandas loc iloc
# Selecting Datafrmae Information:
# iloc
# selecting a single row:
df.iloc[3]
# selecting a range of rows:
df.iloc[0:3]
# selecting all rows, with columns within an index range:
# all rows, 1st- 3rd columns, sliced at second index:
df.iloc[:, 0:3]
# selecting a range of rows and a range of columns:
# 1st to 3rd rows, 5th & 6th columns:
df.iloc[0:3, 4:6]
# by multiple noconsecutive rows and columns:
# selecting rows 1, 4, 6 with columns 2, 3, 5:
df.iloc[[0, 3, 5], [1, 2, 4]]
# a) .loc label-based indexing- selecting columns based on index:
# all rows:
df.loc[:, 'column_name']
# or:
df['column_name']
# selected rows:
df.loc[0:5, 'column_name']
# b) boolean indexing using .loc:
df.loc[df['column_name'] < 5]
#boolean indexing fro one column:
df.loc[df['column_condition'] < 12, ['column_desired']]
Example 3: how to use loc and iloc in pandas
>>> df.iloc[0, 1]
2
Example 4: iloc python
>>> df.iloc[[0, 1]]
a b c d
0 1 2 3 4
1 100 200 300 400
Example 5: loc and iloc in pandas
iloc slicing gives all the data upto the position that is passed as argument
loc gives all the data upto the label that is passed as argument
n = pd.Series([1,2,3,4],index = [0,1,2,3])
print("With iloc we got")
print(n.iloc[:2])
print("With loc we got")
print(n.loc[:2])
Example 6: how to use loc and iloc in pandas
>>> mydict = [{'a': 1, 'b': 2, 'c': 3, 'd': 4},
... {'a': 100, 'b': 200, 'c': 300, 'd': 400},
... {'a': 1000, 'b': 2000, 'c': 3000, 'd': 4000 }]
>>> df = pd.DataFrame(mydict)
>>> df
a b c d
0 1 2 3 4
1 100 200 300 400
2 1000 2000 3000 4000