lstm bigger input length embedding layer decreases accuracy code example
Example: embedding dimensionality in Rnn
[[6, 2], [3, 1], [7, 4], [8, 1], [9], [10], [5, 4], [11, 3], [5, 1], [12, 13, 2, 14]]
[[ 6 2 0 0]
[ 3 1 0 0]
[ 7 4 0 0]
[ 8 1 0 0]
[ 9 0 0 0]
[10 0 0 0]
[ 5 4 0 0]
[11 3 0 0]
[ 5 1 0 0]
[12 13 2 14]]
Loaded 400000 word vectors.
_________________________________________________________________
Layer (type) Output Shape Param #
=================================================================
embedding_1 (Embedding) (None, 4, 100) 1500
_________________________________________________________________
flatten_1 (Flatten) (None, 400) 0
_________________________________________________________________
dense_1 (Dense) (None, 1) 401
=================================================================
Total params: 1,901
Trainable params: 401
Non-trainable params: 1,500
_________________________________________________________________
Accuracy: 100.000000